Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Exp Parasitol ; 255: 108647, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37914151

RESUMEN

Chagas disease (CD) remains neglected and causes high morbidity and mortality. The great difficulty is the lack of effective treatment. The current drugs cause side effects and have limited therapeutic efficacy in the chronic phase. This study aims to fulfil some gaps in studies of the natural substance lychnopholide nanoencapsulated LYC-PLA-PEG-NC (LYC-NC) and free (Free-LYC): the activity in epimastigotes and amastigotes to determine its selectivity index (SI), the therapeutic efficacy in mice infected with Colombian Trypanosoma cruzi strain and insight of the mechanism of LYC-NC action on T. cruzi. The SI was obtained by calculation of the ratio between the IC50 value toward H9c2 cells divided by the IC50 value in the anti-T. cruzi test. Infected Swiss mice were treated with 2 and 12 mg/kg/day via intravenous and oral, respectively, and the therapeutic efficacy was determined. The IC50 of LYC-NC and Free-LYC for epimastigotes of T. cruzi were similar. Both were active against amastigotes in cell culture, particularly Free-LYC. The SI of LYC-NC and Free-LYC were 45.38 and 32.11, respectively. LYC-NC 2 and 12 mg/kg/day cured parasitologically, 62.5% and 80% of the animals, respectively, infected with a strain resistant to treatment. The fluorescent NC was distributed in the cardiomyocyte cytoplasm, infected or not, and interacted with the trypomastigotes. Together, these results represent advances in demonstrating LYC as a potent new therapeutic option for treating CD.


Asunto(s)
Enfermedad de Chagas , Nanocápsulas , Nitroimidazoles , Tripanocidas , Trypanosoma cruzi , Animales , Ratones , Nifurtimox/uso terapéutico , Nitroimidazoles/farmacología , Nitroimidazoles/uso terapéutico , Enfermedad de Chagas/tratamiento farmacológico , Poliésteres/farmacología , Poliésteres/uso terapéutico , Tripanocidas/farmacología , Tripanocidas/uso terapéutico
2.
Parasitol Res ; 121(10): 2861-2874, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35972545

RESUMEN

Chagas disease, caused by the protozoan Trypanosoma cruzi, is an important public health problem in Latin America. Nanoencapsulation of anti-T. cruzi drugs has significantly improved their efficacy and reduced cardiotoxicity. Thus, we investigated the in vitro interaction of polyethylene glycol-block-poly(D,L-lactide) nanocapsules (PEG-PLA) with trypomastigotes and with intracellular amastigotes of the Y strain in cardiomyoblasts, which are the infective forms of T. cruzi, using fluorescence and confocal microscopy. Fluorescently labeled nanocapsules (NCs) were internalized by non-infected H9c2 cells toward the perinuclear region. The NCs did not induce significant cytotoxicity in the H9c2 cells, even at the highest concentrations and interacted equally with infected and non-infected cells. In infected cardiomyocytes, NCs were distributed in the cytoplasm and located near intracellular amastigote forms. PEG-PLA NCs and trypomastigote form interactions also occurred. Altogether, this study contributes to the development of engineered polymeric nanocarriers as a platform to encapsulate drugs and to improve their uptake by different intra- and extracellular forms of T. cruzi, paving the way to find new therapeutic strategies to fight the causative agent of Chagas disease.


Asunto(s)
Enfermedad de Chagas , Nanocápsulas , Trypanosoma cruzi , Enfermedad de Chagas/tratamiento farmacológico , Humanos , Poliésteres , Polietilenglicoles
3.
PeerJ ; 10: e13470, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35651746

RESUMEN

Chagas disease is a life-threatening illness caused by the parasite Trypanosoma cruzi. The diagnosis of the acute form of the disease is performed by trained microscopists who detect parasites in blood smear samples. Since this method requires a dedicated high-resolution camera system attached to the microscope, the diagnostic method is more expensive and often prohibitive for low-income settings. Here, we present a machine learning approach based on a random forest (RF) algorithm for the detection and counting of T. cruzi trypomastigotes in mobile phone images. We analyzed micrographs of blood smear samples that were acquired using a mobile device camera capable of capturing images in a resolution of 12 megapixels. We extracted a set of features that describe morphometric parameters (geometry and curvature), as well as color, and texture measurements of 1,314 parasites. The features were divided into train and test sets (4:1) and classified using the RF algorithm. The values of precision, sensitivity, and area under the receiver operating characteristic (ROC) curve of the proposed method were 87.6%, 90.5%, and 0.942, respectively. Automating image analysis acquired with a mobile device is a viable alternative for reducing costs and gaining efficiency in the use of the optical microscope.


Asunto(s)
Teléfono Celular , Enfermedad de Chagas , Parásitos , Trypanosoma cruzi , Animales , Enfermedad de Chagas/diagnóstico , Curva ROC
4.
Pathogens ; 10(2)2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33503848

RESUMEN

Acute chagasic encephalitis is a clinically severe central nervous system (CNS) manifestation. However, the knowledge of the nervous form of Chagas disease is incomplete. The role of the muscarinic acetylcholine receptor (mAChR) on mice behavior and brain lesions induced by Trypanosoma cruzi (Colombian strain) was herein investigated in mice treated with the mAChR agonist and antagonist (carbachol and atropine), respectively. Immunosuppressed or non-immunosuppressed mice were intracerebroventricularly (icv) or intraperitoneally (ip) infected. All groups were evaluated 15 d.p.i. (days post infection). Intraperitoneally infected animals had subpatent parasitemia. Patent parasitemia occurred only in icv infected mice. The blockade of mAChR increased the parasitemia, parasitism and lesions compared to its activation. Infected not treated (INT ip) mice did not present meningitis and encephalitis, regardless of immunosuppression. INT icv brains presented higher cellularity, discrete signs of cellular degeneration, frequent presence of parasites and focal meningitis. The immunosuppressed atropine + icv mice presented increased intracellular parasitism associated with degenerative parenchymal changes, while carbachol + icv mice presented discrete meningitis, preservation of the cortex and absence of relevant parasitism. Cholinergic receptor blockage increased impairment of coordination vs. receptor activation. Muscarinic cholinergic pathway seems to be involved in immune mediated cell invasion events while its blockade favored infection evolution, brain lesions, and behavioral alterations.

5.
Parasitol Res ; 120(4): 1511-1517, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33236174

RESUMEN

Chagas disease (CD) is endemic in Latin America. Drugs available for its treatment are benznidazole (BZ)/nifurtimox (NF), both with low efficacy in the late infection and responsible for several side effects. Studies of new drugs for CD among natural products, and using drug combinations with BZ/NF are recommended. Silibinin (SLB) is a natural compound that inhibits the efflux pump (Pgp) of drugs in host cell membranes, causes death of trypanosomatids, has anti-inflammatory activity, and was never assayed against T. cruzi. Here, in vitro and in vivo activities of SLB, SLB+BZ, and BZ against T. cruzi Y strain were evaluated. Cytotoxicity of SLB in VERO cells by the MTT method revealed IC50 of 250.22 µM. The trypanocidal activity evaluated by resazurin method in epimastigotes showed that SLB 25 µM inhibited parasite growth. SLB IC50 and selectivity index (SI) for amastigote were 79.81 µM and 3.13, respectively. SLB100+BZ10 showed higher parasite inhibition (91.44%) than SLB or BZ. Swiss mice infected with Y strain were treated with SLB, SLB+BZ, and BZ. Parasitemia was evaluated daily and 90, 180, and 240 days after treatment in surviving animals by hemoculture, blood qPCR, and after euthanasia, by qPCR in heart tissue. SLB monotherapy was not able to control the parasitemia/mortality of the animals. Parasitological negativation of 85.7-100% was observed in the experimental groups treated with SLB+BZ. Although SLB had shown activity against T. cruzi in vitro, it was not active in mice. Thus, the results of the therapeutic effect observed with SLB+BZ may be interpreted as a result from BZ action.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Nitroimidazoles/farmacología , Silibina/farmacología , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Enfermedad de Chagas/parasitología , Chlorocebus aethiops , Femenino , Corazón/parasitología , Concentración 50 Inhibidora , Ratones , Nitroimidazoles/uso terapéutico , Parasitemia/tratamiento farmacológico , Parasitemia/parasitología , Reacción en Cadena en Tiempo Real de la Polimerasa , Silibina/química , Silibina/uso terapéutico , Tripanocidas/uso terapéutico , Células Vero
6.
Parasitology ; 147(1): 108-119, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31455451

RESUMEN

BACKGROUND: The current drugs for Chagas disease treatment present several limitations. METHODS: The sesquiterpene lactone goyazensolide (GZL) was evaluated regarding to cytotoxicity and trypanocidal activity against amastigotes, selectivity index (SI) in vitro, acute toxicity and anti-Trypanosoma cruzi activity in vivo. RESULTS: The in vitro cytotoxicity in H9c2 cells was observed at doses >250 ng mL-1 of GZL and the SI were of 52.82 and 4.85 (24 h) and of 915.00 and 41.00 (48 h) for GZL and BZ, respectively. Nephrotoxicity and hepatotoxicity were not verified. Treatment with GZL of mice infected with CL strain led to a significant decrease of parasitaemia and total survival at doses of 1 and 3 mg kg-1 day-1 by oral and IV, respectively. This last group cured 12.5% of the animals (negativation of HC, PCR, qPCR and ELISA). Animals infected with Y strain showed significant decrease of parasitaemia and higher negativation in all parasitological tests in comparison to BZ and control groups, but were ELISA reactive, as well as the BZ group, but mice treated with 5.0 mg kg-1 day-1 by oral were negative in parasitological tests and survived. CONCLUSION: GZL was more active against T. cruzi than benznidazole in vitro and presented important therapeutic activity in vivo in both T. cruzi strains.


Asunto(s)
Hidrocarburos Aromáticos con Puentes/farmacología , Hidrocarburos Aromáticos con Puentes/uso terapéutico , Enfermedad de Chagas/tratamiento farmacológico , Furanos/farmacología , Furanos/uso terapéutico , Sesquiterpenos/farmacología , Sesquiterpenos/uso terapéutico , Sesterterpenos/farmacología , Sesterterpenos/uso terapéutico , Trypanosoma cruzi/efectos de los fármacos , Animales , Hidrocarburos Aromáticos con Puentes/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Furanos/toxicidad , Ratones , Nitroimidazoles/farmacología , Nitroimidazoles/uso terapéutico , Sesquiterpenos/toxicidad , Sesterterpenos/toxicidad , Análisis de Supervivencia , Tripanocidas/farmacología , Tripanocidas/uso terapéutico , Tripanocidas/toxicidad
7.
Antimicrob Agents Chemother ; 60(9): 5215-22, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27324760

RESUMEN

The etiological treatment of Chagas disease remains neglected. The compounds available show several limitations, mainly during the chronic phase. Lychnopholide encapsulated in polymeric nanocapsules (LYC-NC) was efficacious in mice infected with Trypanosoma cruzi and treated by intravenous administration during the acute phase (AP). As the oral route is preferred for treatment of chronic infections, such as Chagas disease, this study evaluated the use of oral LYC-NC in the AP and also compared it with LYC-NC administered to mice by the oral and intravenous routes during the chronic phase (CP). The therapeutic efficacy was evaluated by fresh blood examination, hemoculture, PCR, and enzyme-linked immunosorbent assay (ELISA). The cure rates in the AP and CP were 62.5% and 55.6%, respectively, upon oral administration of LYC-poly(d,l-lactide)-polyethylene glycol nanocapsules (LYC-PLA-PEG-NC) and 57.0% and 30.0%, respectively, with LYC-poly-ε-caprolactone nanocapsules (LYC-PCL-NC). These cure rates were significantly higher than that of free LYC, which did not cure any animals. LYC-NC formulations administered orally during the AP showed cure rates similar to that of benznidazole, but only LYC-NC cured mice in the CP. Similar results were achieved with intravenous treatment during the CP. The higher cure rates obtained with LYC loaded in PLA-PEG-NC may be due to the smaller particle size of these NC and the presence of PEG, which influence tissue diffusion and the controlled release of LYC. Furthermore, PLA-PEG-NC may improve the stability of the drug in the gastrointestinal tract. This work is the first report of cure of experimental Chagas disease via oral administration during the CP. These findings represent a new and important perspective for oral treatment of Chagas disease.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Preparaciones de Acción Retardada/farmacología , Lactonas/farmacología , Nanocápsulas/química , Sesquiterpenos/farmacología , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Enfermedad Aguda , Administración Intravenosa , Administración Oral , Animales , Enfermedad de Chagas/mortalidad , Enfermedad de Chagas/parasitología , Enfermedad de Chagas/patología , Enfermedad Crónica , Preparaciones de Acción Retardada/química , Modelos Animales de Enfermedad , Composición de Medicamentos/métodos , Humanos , Lactonas/química , Ratones , Nanocápsulas/administración & dosificación , Nitroimidazoles/farmacología , Polietilenglicoles/química , Sesquiterpenos/química , Análisis de Supervivencia , Resultado del Tratamiento , Tripanocidas/química , Trypanosoma cruzi/crecimiento & desarrollo , Trypanosoma cruzi/patogenicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...