Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 109(6-1): 064613, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-39021030

RESUMEN

We present a dynamic light scattering setup to probe, with time and space resolution, the microscopic dynamics of soft matter systems confined within millimeter-sized spherical drops. By using an ad hoc optical layout, we tackle the challenges raised by refraction effects due to the unconventional shape of the samples. We first validate the setup by investigating the dynamics of a suspension of Brownian particles. The dynamics measured at different positions in the drop, and hence different scattering angles, are found to be in excellent agreement with those obtained for the same sample in a conventional light scattering setup. We then demonstrate the setup capabilities by investigating a bead made of a polymer hydrogel undergoing swelling. The gel microscopic dynamics exhibit a space dependence that strongly varies with time elapsed since the beginning of swelling. Initially, the dynamics in the periphery of the bead are much faster than in the core, indicative of nonuniform swelling. As the swelling proceeds, the dynamics slow down and become more spatially homogeneous. By comparing the experimental results to numerical and analytical calculations for the dynamics of a homogeneous, purely elastic sphere undergoing swelling, we establish that the mean square displacement of the gel strands deviates from the affine motion inferred from the macroscopic deformation, evolving from fast diffusivelike dynamics at the onset of swelling to slower, yet supradiffusive, rearrangements at later stages.

2.
Soft Matter ; 19(36): 6968-6977, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37665265

RESUMEN

The evaporation of drops of colloidal suspensions plays an important role in numerous contexts, such as the production of powdered dairies, the synthesis of functional supraparticles, and virus and bacteria survival in aerosols or drops on surfaces. The presence of colloidal particles in the evaporating drop eventually leads to the formation of a dense shell that may undergo a shape instability. Previous works propose that, for drops evaporating very fast, the instability occurs when the particles form a rigid porous solid, constituted of permanently aggregated particles at random close packing. To date, however, no measurements could directly test this scenario and assess whether it also applies to drops drying at lower evaporation rates, severely limiting our understanding of this phenomenon and the possibility of harnessing it in applications. Here, we combine macroscopic imaging and space- and time-resolved measurements of the microscopic dynamics of colloidal nanoparticles in drying drops sitting on a hydrophobic surface, measuring the evolution of the thickness of the shell and the spatial distribution and mobility of the nanoparticles. We find that, above a threshold evaporation rate, the drop undergoes successively two distinct shape instabilities, invagination and cracking. While permanent aggregation of nanoparticles accompanies the second instability, as hypothesized in previous works on fast-evaporating drops, we show that the first one results from a reversible glass transition of the shell, unreported so far. We rationalize our findings and discuss their implications in the framework of a unified state diagram for the drying of colloidal drops sitting on a hydrophobic surface.

3.
Mol Cancer Res ; 21(6): 614-627, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36867680

RESUMEN

Breast cancer is the most common type of cancer in women worldwide, with the luminal subtype being the most widespread. Although characterized by better prognosis compared with other subtypes, luminal breast cancer is still considered a threatening disease due to therapy resistance, which occurs via both cell- and non-cell-autonomous mechanisms. Jumonji domain-containing 6, arginine demethylase and lysine hydroxylase (JMJD6) is endowed with a negative prognostic value in luminal breast cancer and, via its epigenetic activity, it is known to regulate many intrinsic cancer cell pathways. So far, the effect of JMJD6 in molding the surrounding microenvironment has not been explored.Here, we describe a novel function of JMJD6 showing that its genetic inhibition in breast cancer cells suppresses lipid droplet formation and ANXA1 expression, via estrogen receptor alpha and PPARα modulation. Reduction of intracellular ANXA1 results in decreased release in the tumor microenvironment (TME), ultimately preventing M2-type macrophage polarization and tumor aggressiveness. IMPLICATIONS: Our findings identify JMJD6 as a determinant of breast cancer aggressiveness and provide the rationale for the development of inhibitory molecules to reduce disease progression also through the remodeling of TME composition.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/patología , Microambiente Tumoral , Histona Demetilasas con Dominio de Jumonji/genética , Macrófagos/patología
4.
Cancer Res ; 83(1): 117-129, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36318106

RESUMEN

Cancer is a systemic disease able to reprogram the bone marrow (BM) niche towards a protumorigenic state. The impact of cancer on specific BM subpopulations can qualitatively differ according to the signals released by the tumor, which can vary on the basis of the tissue of origin. Using a spontaneous model of mammary carcinoma, we identified BM mesenchymal stem cells (MSC) as the first sensors of distal cancer cells and key mediators of BM reprogramming. Through the release of IL1B, BM MSCs induced transcriptional upregulation and nuclear translocation of the activating transcription factor 3 (ATF3) in hematopoietic stem cells. ATF3 in turn promoted the formation of myeloid progenitor clusters and sustained myeloid cell differentiation. Deletion of Atf3 specifically in the myeloid compartment reduced circulating monocytes and blocked their differentiation into tumor-associated macrophages. In the peripheral blood, the association of ATF3 expression in CD14+ mononuclear cells with the expansion CD11b+ population was able to discriminate between women with malignant or benign conditions at early diagnosis. Overall, this study identifies the IL1B/ATF3 signaling pathway in the BM as a functional step toward the establishment of a tumor-promoting emergency myelopoiesis, suggesting that ATF3 could be tested in a clinical setting as a circulating marker of early transformation and offering the rationale for testing the therapeutic benefits of IL1B inhibition in patients with breast cancer. Significance: Bone marrow mesenchymal stem cells respond to early breast tumorigenesis by upregulating IL1B to promote ATF3 expression in hematopoietic stem cells and to induce myeloid cell differentiation that supports tumor development.


Asunto(s)
Médula Ósea , Neoplasias de la Mama , Humanos , Femenino , Médula Ósea/patología , Factor de Transcripción Activador 3/genética , Factor de Transcripción Activador 3/metabolismo , Neoplasias de la Mama/patología , Células Madre Hematopoyéticas/metabolismo , Transformación Celular Neoplásica/metabolismo , Células de la Médula Ósea/metabolismo
5.
Mol Cancer ; 21(1): 215, 2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36503430

RESUMEN

BACKGROUND: Autoimmune disorders, including Systemic Lupus Erythematosus (SLE), are associated with increased incidence of hematological malignancies. The matricellular protein osteopontin (OPN) has been linked to SLE pathogenesis, as SLE patients show increased serum levels of OPN and often polymorphisms in its gene. Although widely studied for its pro-tumorigenic role in different solid tumours, the role of OPN in autoimmunity-driven lymphomagenesis has not been investigated yet. METHODS: To test the role of OPN in the SLE-associated lymphomagenesis, the SLE-like prone Faslpr/lpr mutation was transferred onto an OPN-deficient background. Spleen from Faslpr/lpr and OPN-/-Faslpr/lpr mice, as well as purified B cells, were analysed by histopathology, flow cytometry, Western Blot, immunohistochemistry, immunofluorescence and gene expression profile to define lymphoma characteristics and investigate the molecular mechanisms behind the observed phenotype. OPN cellular localization in primary splenic B cells and mouse and human DLBCL cell lines was assessed by confocal microscopy. Finally, gain of function experiments, by stable over-expression of the secreted (sOPN) and intracellular OPN (iOPN) in OPN-/-Faslpr/lpr -derived DLBCL cell lines, were performed for further validation experiments. RESULTS: Despite reduced autoimmunity signs, OPN-/-Faslpr/lpr mice developed splenic lymphomas with higher incidence than Faslpr/lpr counterparts. In situ and ex vivo analysis featured such tumours as activated type of diffuse large B cell lymphoma (ABC-DLBCL), expressing BCL2 and c-MYC, but not BCL6, with activated STAT3 signaling. OPN-/-Faslpr/lpr B lymphocytes showed an enhanced TLR9-MYD88 signaling pathway, either at baseline or after stimulation with CpG oligonucleotides, which mimic dsDNA circulating in autoimmune conditions. B cells from Faslpr/lpr mice were found to express the intracellular form of OPN. Accordingly, gene transfer-mediated re-expression of iOPN, but not of its secreted isoform, into ABC-DLBCL cell lines established from OPN-/-Faslpr/lpr mice, prevented CpG-mediated activation of STAT3, suggesting that the intracellular form of OPN may represent a brake to TLR9 signaling pathway activation. CONCLUSION: These data indicate that, in the setting of SLE-like syndrome in which double strand-DNA chronically circulates and activates TLRs, B cell intracellular OPN exerts a protective role in autoimmunity-driven DLBCL development, mainly acting as a brake in the TLR9-MYD88-STAT3 signaling pathway.


Asunto(s)
Enfermedades Autoinmunes , Lupus Eritematoso Sistémico , Linfoma , Humanos , Ratones , Animales , Ratones Endogámicos MRL lpr , Ratones Endogámicos C57BL , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/patología , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Linfoma/genética , Receptor Toll-Like 9/metabolismo , Factor de Transcripción STAT3/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo
7.
iScience ; 24(6): 102510, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34142027

RESUMEN

The secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein with unexpected immunosuppressive function in myeloid cells. We investigated the role of SPARC in autoimmunity using the pristane-induced model of lupus that, in mice, mimics human systemic lupus erythematosus (SLE). Sparc -/- mice developed earlier and more severe renal disease, multi-organ parenchymal damage, and arthritis than the wild-type counterpart. Sparc +/- heterozygous mice showed an intermediate phenotype suggesting Sparc gene dosage in autoimmune-related events. Mechanistically, reduced Sparc expression in neutrophils blocks their clearance by macrophages, through defective delivery of don't-eat-me signals. Dying Sparc -/- neutrophils that escape macrophage scavenging become source of autoantigens for dendritic cell presentation and are a direct stimulation for γδT cells. Gene profile analysis of knee synovial biopsies from SLE-associated arthritis showed an inverse correlation between SPARC and key autoimmune genes. These results point to SPARC down-regulation as a leading event characterizing SLE and rheumatoid arthritis pathogenesis.

8.
Cancer Res ; 81(16): 4257-4274, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34185677

RESUMEN

Fatal neuroendocrine differentiation (NED) of castration-resistant prostate cancer is a recurrent mechanism of resistance to androgen deprivation therapies (ADT) and antiandrogen receptor pathway inhibitors (ARPI) in patients. The design of effective therapies for neuroendocrine prostate cancer (NEPC) is complicated by limited knowledge of the molecular mechanisms governing NED. The paucity of acquired genomic alterations and the deregulation of epigenetic and transcription factors suggest a potential contribution from the microenvironment. In this context, whether ADT/ARPI induces stromal cells to release NED-promoting molecules and the underlying molecular networks are unestablished. Here, we utilized transgenic and transplantable mouse models and coculture experiments to unveil a novel tumor-stroma cross-talk that is able to induce NED under the pressure of androgen deprivation. Castration induced upregulation of GRP78 in tumor cells, which triggers miR29-b-mediated downregulation of the matricellular protein SPARC in the nearby stroma. SPARC downregulation enabled stromal cells to release IL6, a known inducer of NED. A drug that targets GRP78 blocked NED in castrated mice. A public, human NEPC gene expression dataset showed that Hspa5 (encoding for GRP78) positively correlates with hallmarks of NED. Finally, prostate cancer specimens from patients developing local NED after ADT showed GRP78 upregulation in tumor cells and SPARC downregulation in the stroma. These results point to GRP78 as a potential therapeutic target and to SPARC downregulation in stromal cells as a potential early biomarker of tumors undergoing NED. SIGNIFICANCE: Tumor-stroma cross-talk promotes neuroendocrine differentiation in prostate cancer in response to hormone therapy via a GRP78/SPARC/IL6 axis, providing potential therapeutic targets and biomarkers for neuroendocrine prostate cancer.


Asunto(s)
Regulación hacia Abajo , Osteonectina/biosíntesis , Neoplasias de la Próstata/metabolismo , Células del Estroma/metabolismo , Animales , Biomarcadores de Tumor/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Técnicas de Cocultivo , Chaperón BiP del Retículo Endoplásmico/metabolismo , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Células Neuroendocrinas/metabolismo , Transgenes , Microambiente Tumoral
9.
Cancer Res ; 80(3): 484-498, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31776132

RESUMEN

The presence of a growing tumor establishes a chronic state of inflammation that acts locally and systemically. Bone marrow responds to stress signals by expanding myeloid cells endowed with immunosuppressive functions, further fostering tumor growth and dissemination. How early in transformation the cross-talk with the bone marrow begins and becomes detectable in blood is unknown. Here, gene expression profiling of the bone marrow along disease progression in a spontaneous model of mammary carcinogenesis demonstrates that transcriptional modifications in the hematopoietic compartment occurred as early as preinvasive disease stages. The transcriptional profile showed downregulation of adaptive immunity and induction of programs related to innate immunity and response to danger signals triggered by activating transcription factor 3. Transcriptional reprogramming was paralleled by the expansion of myeloid populations at the expense of erythroid and B lymphoid fractions. Hematopoietic changes were associated with modifications of the bone marrow stromal architecture through relocalization and increased density in the interstitial area of Nestin+ mesenchymal cells expressing CXCL12 and myeloid cells expressing CXCL12 receptor CXCR4. These early events were concomitant with deregulation of circulating miRNAs, which were predicted regulators of transcripts downregulated in the bone marrow and involved in lymphoid differentiation and activation. These data provide a link between sensing of peripheral cancer initiation by the bone marrow and hematopoietic adaptation to distant noxia through transcriptional rewiring toward innate/inflammatory response programs. SIGNIFICANCE: The bone marrow senses distant tissue transformation at premalignant/preinvasive stages, suggesting that circulating messengers, intercepted in the blood, could serve as early diagnostic markers.


Asunto(s)
Adaptación Fisiológica/genética , Biomarcadores de Tumor/genética , Médula Ósea/patología , Neoplasias de la Mama/patología , MicroARN Circulante/genética , Células del Estroma/patología , Transcriptoma , Animales , Apoptosis , Biomarcadores de Tumor/sangre , Médula Ósea/metabolismo , Neoplasias de la Mama/sangre , Neoplasias de la Mama/genética , Proliferación Celular , MicroARN Circulante/sangre , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos BALB C , Células del Estroma/metabolismo , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Oncogene ; 38(21): 4047-4060, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30705400

RESUMEN

Triple-negative breast cancers (TNBCs) are characterized by a poor prognosis and lack of targeted treatments, and thus, new therapeutic strategies are urgently needed. Inhibitors against programmed death-1 (PD-1)/PD-1 ligand (PD-L1) have shown significant efficacy in various solid cancers, but their activity against TNBCs remains limited. Here, we report that human TNBCs molecularly stratified for high levels of PD-L1 (PD-L1High) showed significantly enriched expression of immune and cancer stemness pathways compared with those with low PD-L1 expression (PD-L1Low). In addition, the PD-L1High cases were significantly associated with a high stemness score (SSHigh) signature. TNBC cell lines gated for aldehyde dehydrogenase (ALDH) and CD44 stemness markers exhibited increased levels of PD-L1 versus their ALDH-negative and CD44Low counterparts, and PD-L1High cells generated significantly more mammospheres than PD-L1Low cells. Murine mammary SCA-1-positive tumor cells with PD-L1High expression generated tumors in vivo with higher efficacy than PD-L1Low cells. Furthermore, treatment of TNBC cells with selective WNT inhibitors or activators downregulated or upregulated PD-L1 expression, respectively, implying a functional cross-talk between WNT activity and PD-L1 expression. Remarkably, human TNBC samples contained tumor elements co-expressing PD-L1 with ALDH1A1 and/or CD44v6. Additionally, both PD-L1-/SCA1-positive and ALDH1A1-positive tumor elements were found in close contact with CD3-, and PD-1-positive T cells in murine and human tumor samples. Overall, our study suggests that PD-L1-positive tumor elements with a stemness phenotype may participate in the complex dynamics of TNBC-related immune evasion, which might be targeted through WNT signaling inhibition.


Asunto(s)
Antígeno B7-H1/metabolismo , Células Madre/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Vía de Señalización Wnt/fisiología , Aldehído Deshidrogenasa/metabolismo , Animales , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Regulación hacia Abajo/fisiología , Femenino , Humanos , Receptores de Hialuranos/metabolismo , Ratones Endogámicos BALB C , Regulación hacia Arriba/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA