Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
RSC Med Chem ; 15(6): 2045-2062, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38911150

RESUMEN

Alzheimer's disease (AD) and cancer are among the most devastating diseases of the 21st century. Although the clinical manifestations are different and the cellular mechanisms underlying the pathologies are opposite, there are different classes of molecules that are effective in both diseases, such as quinone-based compounds and histone deacetylase inhibitors (HDACIs). Herein, we investigate the biological effects of a series of compounds built to exploit the beneficial effects of quinones and histone deacetylase inhibition (compounds 1-8). Among the different compounds, compound 6 turned out to be a potent cytotoxic agent in SH-SY5Y cancer cell line, with a half maximal inhibitory concentration (IC50) value lower than vorinostat and a pro-apoptotic activity. On the other hand, compound 8 was nontoxic up to the concentration of 100 µM and was highly effective in stimulating the proliferation of neural precursor cells (NPCs), as well as inducing differentiation into neurons, at low micromolar concentrations. In particular, it was able to induce NPC differentiation solely towards a neuronal-specific phenotype, without affecting glial cells commitment.

2.
ACS Chem Neurosci ; 15(11): 2099-2111, 2024 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-38747979

RESUMEN

Despite recent FDA approvals, Alzheimer's disease (AD) still represents an unmet medical need. Among the different available therapeutic approaches, the development of multitarget molecules represents one of the most widely pursued. In this work, we present a second generation of dual ligands directed toward highly networked targets that are deeply involved in the development of the disease, namely, Histone Deacetylases (HDACs) and Glycogen Synthase Kinase 3ß (GSK-3ß). The synthesized compounds are highly potent GSK-3ß, HDAC2, and HDAC6 inhibitors with IC50 values in the nanomolar range of concentrations. Among them, compound 4 inhibits histone H3 and tubulin acetylation at 0.1 µM concentration, blocks hyperphosphorylation of tau protein, and shows interesting immunomodulatory and neuroprotective properties. These features, together with its ability to cross the blood-brain barrier and its favorable physical-chemical properties, make compound 4 a promising hit for the development of innovative disease-modifying agents.


Asunto(s)
Enfermedad de Alzheimer , Glucógeno Sintasa Quinasa 3 beta , Inhibidores de Histona Desacetilasas , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Humanos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Histona Desacetilasa 6/antagonistas & inhibidores , Histona Desacetilasa 6/metabolismo , Animales , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Proteínas tau/metabolismo , Histona Desacetilasas/metabolismo , Fosforilación/efectos de los fármacos , Acetilación , Histona Desacetilasa 2/metabolismo , Histona Desacetilasa 2/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA