Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
OMICS ; 26(4): 204-217, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35255221

RESUMEN

The advances made by microbiome research call for new vocabulary and expansion of our thinking in microbiology. For example, the life-forms presenting in both unicellular and multicellular formats invite us to rethink microbial existence, organization, growth, pathogenicity, and therapeutics in the 21st century. A view of such populations as parts of single organisms with a loose, distributed multicellular organization, introduced here as a germ-ganism, rather than communities, might open up interesting prospects for diagnostics and therapeutics innovation. This study tested and further contextualized the concept of germ-ganism using solid cultures of bacteria and fungi. Based on our findings and the literature reviewed herein, we propose that germ-ganism has synergy with a systems medicine approach by broadening host-environment interactions from cells and microorganisms to a scale of biological ecosystems. Germ-ganism also brings about the possibility of studying the multilevel impacts of novel therapeutic agents within and across networks of microbial ecosystems. The germ-ganism would lend itself, in the long term, to a veritable biocybernetics system, while in the mid-term, we anticipate it will contribute to new diagnostics and therapeutics. Biosecurity applications would be immensely affected by germ-ganism. Industrial applications of germ-ganism are of interest as a more sustainable alternative to costly solutions such as tampered strains/microorganisms. In conclusion, germ-ganism is informed by lessons from microbiome research and invites rethinking microbial existence, organization, and growth as an organism. Germ-ganism has vast ramifications for understanding pathogenicity, and clinical, biosecurity, and biotechnology applications in the current historical moment of the COVID-19 pandemic and beyond.


Asunto(s)
COVID-19 , Microbiota , Bacterias , Humanos , Pandemias , Virulencia
2.
OMICS ; 25(8): 484-494, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34255557

RESUMEN

Pandemics and environmental crises evident from the first two decades of the 21st century call for methods innovation in biosurveillance and early detection of risk signals in planetary ecosystems. In crises conditions, conventional methods in public health, biosecurity, and environmental surveillance do not work well. In addition, the standard laboratory amenities and procedures may become unavailable, irrelevant, or simply not feasible, for example, owing to disruptions in logistics and process supply chains. The COVID-19 pandemic has been a wakeup call in this sense to reintroduce point-of-need diagnostics with an eye to limited resource settings and biosurveillance solutions. We report here a methodology innovation, a fast, scalable, and alkaline DNA extraction pipeline for emergency microbiomics biosurveillance. We believe that the presented methodology is well poised for effective, resilient, and anticipatory responses to future pandemics and ecological crises while contributing to microbiome science and point-of-need diagnostics in nonelective emergency contexts. The alkaline DNA extraction pipeline can usefully expand the throughput in emergencies by deployment or to allow backup in case of instrumentation failure in vital facilities. The need for distributed public health genomics surveillance is increasingly evident in the 21st century. This study makes a contribution to these ends broadly, and for future pandemic preparedness in particular. We call for innovation in biosurveillance methods that remain important existentially on a planet under pressure from unchecked human growth and breach of the boundaries between human and nonhuman animal habitats.


Asunto(s)
Biovigilancia/métodos , ADN/aislamiento & purificación , Técnicas Microbiológicas , Vigilancia en Salud Pública/métodos , Animales , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Hongos/clasificación , Hongos/genética , Hongos/aislamiento & purificación , Técnicas Genéticas/economía , Humanos , Técnicas Microbiológicas/economía , Plantas/microbiología
3.
OMICS ; 24(8): 493-504, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32525758

RESUMEN

Modern microbiology and drug development are in a watershed moment with the advent of electroceuticals. In addition to genomics, electrical impulses in an organism are believed to contribute to tissue and cellular plasticity. Hence, electroceuticals or bioelectronics offers the promise to identify innovative approaches to treat human diseases. However, applications toward electromicrobiology are still limited and rare, despite the high potential to innovate the fields of both microbiology and therapeutics. For example, electric modalities for manipulating microbial growth are highly sustainable; can be combined with biopharmaceuticals, probiotics, and pharmacobiotics; and, thus, are well poised for use in medicine, public health, and ecology and diverse industries. We report here the introduction of a new research framework and technology platform for electroculturomics, by coupling standard solid-state mycological cultures with conductive treatment using a conformité Européene (CE-)-certified medical ionophoresis device. We share our experience with a diverse range of fungi that have been treated with the electroculturomics approach reported herein. We suggest that this line of inquiry can be extended to electrotranscriptomics and electrometabolomics by deploying electroculturomics in tandem with multi-omics approaches in the future. This article makes a specific contribution to fungal microbiology, and a broader contribution to advance the theory and practice of the field of electroculturomics emerging in 21st-century microbiology and ecology research.


Asunto(s)
Ecología , Hongos/fisiología , Ensayos Analíticos de Alto Rendimiento , Técnicas Microbiológicas , Microbiología , Ecología/métodos , Ecología/tendencias , Ensayos Analíticos de Alto Rendimiento/métodos , Microbiología/tendencias , Investigación
4.
OMICS ; 22(4): 264-273, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29584542

RESUMEN

Agrigenomics is one of the emerging focus areas for omics sciences. Yet, agrigenomics differs from medical omics applications such as pharmacogenomics and precision medicine, by virtue of vastly distributed geography of applications at the intersection of agriculture, nutrition, and genomics research streams. Crucially, agrigenomics can address diagnostics and safety surveillance needs in remote and rural farming communities or decentralized food, crop, and environmental monitoring programs for prompt, selective, and differential identification of pathogens. A case in point is the potato crop that serves as a fundamental nutritional source worldwide. Decentralized potato crop and plant protection facilities are pivotal to minimize unnecessary, preemptive use of broad-spectrum fungicides, thus helping to curtail the costs, environmental burden, and the development of resistance in opportunistic human pathogenic fungi. We report here a polymerase chain reaction-restriction fragment length polymorphism approach that is sensitive and adaptable in detection and broad identification of fungal pathogens in potato crops, with a view to future decentralized agrigenomic surveillance programs. Notably, the fingerprinting patterns obtained by the method fully differentiated 12 fungal species examined in silico, with 10 of them also tested in vitro. The method can be scaled up through improvements in electrophoresis and enzyme panel for adaption to other crops and/or pathogens. We suggest that decentralized and integrated agrosurveillance programs and translational agrigenomic programs can inform future innovations in multidomain biosecurity, particularly across omics applications from agriculture and nutrition to clinical medicine and environmental biosafety.


Asunto(s)
Agricultura , Hongos/clasificación , Hongos/genética , Genoma Fúngico , Genómica , Enfermedades de las Plantas/microbiología , Solanum tuberosum/microbiología , Productos Agrícolas , Bases de Datos Genéticas , Genómica/métodos , Reacción en Cadena de la Polimerasa , Polimorfismo de Longitud del Fragmento de Restricción , Investigación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...