Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Redox Biol ; 62: 102669, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36933393

RESUMEN

Brain injury is accompanied by neuroinflammation, accumulation of extracellular glutamate and mitochondrial dysfunction, all of which cause neuronal death. The aim of this study was to investigate the impact of these mechanisms on neuronal death. Patients from the neurosurgical intensive care unit suffering aneurysmal subarachnoid hemorrhage (SAH) were recruited retrospectively from a respective database. In vitro experiments were performed in rat cortex homogenate, primary dissociated neuronal cultures, B35 and NG108-15 cell lines. We employed methods including high resolution respirometry, electron spin resonance, fluorescent microscopy, kinetic determination of enzymatic activities and immunocytochemistry. We found that elevated levels of extracellular glutamate and nitric oxide (NO) metabolites correlated with poor clinical outcome in patients with SAH. In experiments using neuronal cultures we showed that the 2-oxoglutarate dehydrogenase complex (OGDHC), a key enzyme of the glutamate-dependent segment of the tricarboxylic acid (TCA) cycle, is more susceptible to the inhibition by NO than mitochondrial respiration. Inhibition of OGDHC by NO or by succinyl phosphonate (SP), a highly specific OGDHC inhibitor, caused accumulation of extracellular glutamate and neuronal death. Extracellular nitrite did not substantially contribute to this NO action. Reactivation of OGDHC by its cofactor thiamine (TH) reduced extracellular glutamate levels, Ca2+ influx into neurons and cell death rate. Salutary effect of TH against glutamate toxicity was confirmed in three different cell lines. Our data suggest that the loss of control over extracellular glutamate, as described here, rather than commonly assumed impaired energy metabolism, is the critical pathological manifestation of insufficient OGDHC activity, leading to neuronal death.


Asunto(s)
Ácido Glutámico , Complejo Cetoglutarato Deshidrogenasa , Ratas , Animales , Ácido Glutámico/metabolismo , Estudios Retrospectivos , Citoplasma/metabolismo , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Mitocondrias/metabolismo , Tiamina/metabolismo , Tiamina/farmacología , Óxido Nítrico/metabolismo
2.
Acta Neurochir (Wien) ; 163(1): 139-149, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32839865

RESUMEN

BACKGROUND: Cerebral ischemia and neuroinflammation following aneurysmal subarachnoid hemorrhage (SAH) are major contributors to poor neurological outcome. Our study set out to investigate in an exploratory approach the interaction between NO and energy metabolism following SAH as both hypoxia and inflammation are known to affect nitric oxide (NO) metabolism and NO in turn affects mitochondria. METHODS: In seven patients under continuous multimodality neuromonitoring suffering poor-grade aneurysmal SAH, cerebral metabolism and NO levels (determined as a sum of nitrite plus nitrate) were determined in cerebral microdialysate for 14 days following SAH. In additional ex vivo experiments, rat cortex homogenate was subjected to the NO concentrations determined in SAH patients to test whether these NO concentrations impair mitochondrial function (determined by means of high-resolution respirometry). RESULTS: NO levels showed biphasic kinetics with drastically increased levels during the first 7 days (74.5 ± 29.9 µM) and significantly lower levels thereafter (47.5 ± 18.7 µM; p = 0.02). Only during the first 7 days, NO levels showed a strong negative correlation with brain tissue oxygen tension (r = - 0.78; p < 0.001) and a positive correlation with cerebral lactate (r = 0.79; p < 0.001), pyruvate (r = 0.68; p < 0.001), glutamate (r = 0.65; p < 0.001), as well as the lactate-pyruvate ratio (r = 0.48; p = 0.01), suggesting mitochondrial dysfunction. Ex vivo experiments confirmed that the increase in NO levels determined in patients during the acute phase is sufficient to impair mitochondrial function (p < 0.001). Mitochondrial respiration was inhibited irrespectively of whether glutamate (substrate of complex I) or succinate (substrate of complex II) was used as mitochondrial substrate suggesting the inhibition of mitochondrial complex IV. The latter was confirmed by direct determination of complex IV activity. CONCLUSIONS: Exploratory analysis of our data suggests that during the acute phase of SAH, NO plays a key role in the neuronal damage impairing mitochondrial function and facilitating accumulation of mitochondrial substrate; further studies are required to understand mechanisms underlying this observation.


Asunto(s)
Isquemia Encefálica/etiología , Metabolismo Energético , Óxido Nítrico/metabolismo , Hemorragia Subaracnoidea/complicaciones , Hemorragia Subaracnoidea/metabolismo , Animales , Isquemia Encefálica/metabolismo , Cerebro/química , Cerebro/metabolismo , Femenino , Ácido Glutámico/análisis , Ácido Glutámico/metabolismo , Humanos , Ácido Láctico/análisis , Ácido Láctico/metabolismo , Masculino , Microdiálisis , Persona de Mediana Edad , Mitocondrias/metabolismo , Óxido Nítrico/análisis , Ácido Pirúvico/análisis , Ácido Pirúvico/metabolismo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...