Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202402973, 2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644341

RESUMEN

Metal-Organic Frameworks can be grafted with amines by coordination to metal vacancies to create amine-appended solid adsorbents, which are being considered as an alternative to using aqueous amine solutions for CO2 capture. In this study, we propose an alternative mechanism that does not rely on the use of neutral metal vacancies as binding sites but is enabled by the structural adaptability of heterobimetallic Ti2Ca2 clusters. The combination of hard (Ti4+) and soft (Ca2+) metal centers in the inorganic nodes of the framework enables MUV-10 to adapt its pore windows to the presence of triethylenetetramine molecules. This dynamic cluster response facilitates the translocation and binding of tetraamine inside the microporous cavities to enable the formation of bis-coordinate adducts that are stable in water. The extension of this grafting concept from MUV-10 to larger cavities not restrictive to CO2 diffusion will complement other strategies available for the design of molecular sorbents for decarbonization applications.

2.
ACS Cent Sci ; 9(11): 2044-2056, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38033797

RESUMEN

Cu-exchanged zeolites rely on mobile solvated Cu+ cations for their catalytic activity, but the role of the framework composition in transport is not fully understood. Ab initio molecular dynamics simulations can provide quantitative atomistic insight but are too computationally expensive to explore large length and time scales or diverse compositions. We report a machine-learning interatomic potential that accurately reproduces ab initio results and effectively generalizes to allow multinanosecond simulations of large supercells and diverse chemical compositions. Biased and unbiased simulations of [Cu(NH3)2]+ mobility show that aluminum pairing in eight-membered rings accelerates local hopping and demonstrate that increased NH3 concentration enhances long-range diffusion. The probability of finding two [Cu(NH3)2]+ complexes in the same cage, which is key for SCR-NOx reaction, increases with Cu content and Al content but does not correlate with the long-range mobility of Cu+. Supporting experimental evidence was obtained from reactivity tests of Cu-CHA catalysts with a controlled chemical composition.

3.
Nat Comput Sci ; 3(12): 1034-1044, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38177720

RESUMEN

Understanding material surfaces and interfaces is vital in applications such as catalysis or electronics. By combining energies from electronic structure with statistical mechanics, ab initio simulations can, in principle, predict the structure of material surfaces as a function of thermodynamic variables. However, accurate energy simulations are prohibitive when coupled to the vast phase space that must be statistically sampled. Here we present a bi-faceted computational loop to predict surface phase diagrams of multicomponent materials that accelerates both the energy scoring and statistical sampling methods. Fast, scalable and data-efficient machine learning interatomic potentials are trained on high-throughput density-functional-theory calculations through closed-loop active learning. Markov chain Monte Carlo sampling in the semigrand canonical ensemble is enabled by using virtual surface sites. The predicted surfaces for GaN(0001), Si(111) and SrTiO3(001) are in agreement with past work and indicate that the proposed strategy can model complex material surfaces and discover previously unreported surface terminations.

4.
JACS Au ; 1(10): 1778-1787, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34723280

RESUMEN

The mobility of the copper cations acting as active sites for the selective catalytic reduction of nitrogen oxides with ammonia in Cu-CHA catalysts varies with temperature and feed composition. Herein, the migration of [Cu(NH3)2]+ complexes between two adjacent cavities of the chabazite structure, including other reactant molecules (NO, O2, H2O, and NH3), in the initial and final cavities is investigated using ab initio molecular dynamics (AIMD) simulations combined with enhanced sampling techniques to describe hopping events from one cage to the other. We find that such diffusion is only significantly hindered by the presence of excess NH3 or NO in the initial cavity, since both reactants form with [Cu(NH3)2]+ stable intermediates which are too bulky to cross the 8-ring windows connecting the cavities. The presence of O2 modifies strongly the interaction of NO with Cu+. At low temperatures, we observe NO detachment from Cu+ and increased mobility of the [Cu(NH3)2]+ complex, while at high temperatures, NO reacts spontaneously with O2 to form NO2. The present simulations give evidence for recent experimental observations, namely, an NH3 inhibition effect on the SCR reaction at low temperatures, and transport limitations of NO and NH3 at high temperatures. Our first principle simulations mimicking operating conditions support the existence of two different reaction mechanisms operating at low and high temperatures, the former involving dimeric Cu(NH3)2-O2-Cu(NH3)2 species and the latter occurring by direct NO oxidation to NO2 in one single cavity.

5.
Nanomaterials (Basel) ; 11(8)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34443868

RESUMEN

In this paper, substituted anilines are industrially obtained by direct hydrogenation of nitroaromatic compounds with molecular H2 using metals as catalysts. Previous theoretical studies proposed that the mechanism of the reaction depends on the nature of the metal used as a catalyst, and that rationally designed bimetallic materials might show improved catalytic performance. Herein, we present IR spectroscopic studies of nitrobenzene interactions with monometallic Ni/SiO2, Cu/SiO2 and Pd/SiO2, and with bimetallic CuNi/SiO2 and CuPd/SiO2 catalysts, both in the absence and presence of H2, combined with density functional theory (DFT) calculations on selected bimetallic NiCu(111) and PdCu(111) models. The results obtained experimentally confirm that the reaction mechanism on non-noble metals such as Ni proceeds through N-O bond dissociation, generating nitrosobenzene intermediates, while, on noble metals, such as Pd, H-attack is necessary to activate the NO bond. Moreover, a bimetallic CuPd/SiO2 catalyst with a Pd enriched surface is prepared that exhibits an enhanced H2 dissociation ability and a particular reactivity at the boundary between the two metals.

6.
Faraday Discuss ; 229: 297-317, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33650590

RESUMEN

The mechanism of nitrobenzene hydrogenation on non-noble metals such as Ni is different from that previously reported for noble metals like Pt. The newly proposed pathway involves the initial dissociation of the two N-O bonds of nitrobenzene (Ph-NO2→ Ph-NO → Ph-N), leading to partial oxidation of the catalyst surface, followed by two successive hydrogenation steps (Ph-N → Ph-NH → Ph-NH2) that finally produce the functionalized aniline. Due to the oxophilic nature of non-noble metals like Ni, Co or Cu, the hydrogenation of the Ph-N intermediate and the removal of O in the form of water become the most energy demanding steps of the process. The strength of the interaction of O, H and N with different metals, and the preferential mode of adsorption of nitroarenes on clean and partially oxidized systems obtained from DFT calculations, are now used to propose an efficient non-noble metal catalyst that optimizes activity and selectivity.

7.
J Phys Chem Lett ; 11(23): 10060-10066, 2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33179925

RESUMEN

The dynamic nature of the copper cations acting as active sites for selective catalytic reduction of nitrogen oxides with ammonia is investigated using a combined theoretical and spectroscopic approach. Ab initio molecular dynamics simulations of Cu-CHA catalysts in contact with reactants and intermediates at realistic operating conditions show that only ammonia is able to release Cu+ and Cu2+ cations from their positions coordinated to the zeolite framework, forming mobile Cu+(NH3)2 and Cu2+(NH3)4 complexes that migrate to the center of the cavity. Herein, we give evidence that such mobilization of copper cations modifies the vibrational fingerprint in the 800-1000 cm-1 region of the IR spectra. Bands associated with the lattice asymmetric T-O-T vibrations are perturbed by the presence of coordinated cations, and allow one to experimentally follow the dynamic reorganization of the active sites at operating conditions.

8.
Angew Chem Int Ed Engl ; 59(44): 19708-19715, 2020 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-32597576

RESUMEN

The methanol-to-olefins reaction catalyzed by small-pore cage-based acid zeolites and zeotypes produces a mixture of short chain olefins, whose selectivity to ethene, propene and butene varies with the cavity architecture and with the framework composition. The product distribution of aluminosilicates and silicoaluminophosphates with the CHA and AEI structures (H-SSZ-13, H-SAPO-34, H-SSZ-39 and H-SAPO-18) has been experimentally determined, and the impact of acidity and framework flexibility on the stability of the key cationic intermediates involved in the mechanism and on the diffusion of the olefin products through the 8r windows of the catalysts has been evaluated by means of periodic DFT calculations and ab initio molecular dynamics simulations. The preferential stabilization by confinement of fully methylated hydrocarbon pool intermediates favoring the paring pathway is the main factor controlling the final olefin product distribution.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...