Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Aging (Albany NY) ; 9(1): 68-97, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-28077781

RESUMEN

A progressive loss of genome maintenance has been implicated as both a cause and consequence of aging. Here we present evidence supporting the hypothesis that an age-associated decay in genome maintenance promotes aging in Saccharomyces cerevisiae (yeast) due to an inability to sense or repair DNA damage by topoisomerase 2 (yTop2). We describe the characterization of LS1, identified in a high throughput screen for small molecules that shorten the replicative lifespan of yeast. LS1 accelerates aging without affecting proliferative growth or viability. Genetic and biochemical criteria reveal LS1 to be a weak Top2 poison. Top2 poisons induce the accumulation of covalent Top2-linked DNA double strand breaks that, if left unrepaired, lead to genome instability and death. LS1 is toxic to cells deficient in homologous recombination, suggesting that the damage it induces is normally mitigated by genome maintenance systems. The essential roles of yTop2 in proliferating cells may come with a fitness trade-off in older cells that are less able to sense or repair yTop2-mediated DNA damage. Consistent with this idea, cells live longer when yTop2 expression levels are reduced. These results identify intrinsic yTop2-mediated DNA damage as potentially manageable cause of aging.


Asunto(s)
Senescencia Celular/genética , ADN-Topoisomerasas de Tipo II/genética , Venenos/farmacología , Saccharomyces cerevisiae/metabolismo , Inhibidores de Topoisomerasa II/farmacología , Senescencia Celular/efectos de los fármacos , Roturas del ADN de Doble Cadena/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Inestabilidad Genómica/efectos de los fármacos , Saccharomyces cerevisiae/genética
2.
Anal Biochem ; 474: 59-65, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25572876

RESUMEN

Acyl-coenzyme A (CoA) thioesters are key metabolites in numerous anabolic and catabolic pathways, including fatty acid biosynthesis and ß-oxidation, the Krebs cycle, and cholesterol and isoprenoid biosynthesis. Stable isotope dilution-based methodology is the "gold standard" for quantitative analyses by mass spectrometry. However, chemical synthesis of families of stable isotope-labeled metabolites such as acyl-CoA thioesters is impractical. Previously, we biosynthetically generated a library of stable isotope internal standard analogs of acyl-CoA thioesters by exploiting the essential requirement in mammals and insects for pantothenic acid (vitamin B5) as a metabolic precursor for the CoA backbone. By replacing pantothenic acid in the cell medium with commercially available [(13)C3(15)N1]-pantothenic acid, mammalian cells exclusively incorporated [(13)C3(15)N1]-pantothenate into the biosynthesis of acyl-CoA and acyl-CoA thioesters. We have now developed a much more efficient method for generating stable isotope-labeled CoA and acyl-CoAs from [(13)C3(15)N1]-pantothenate using stable isotope labeling by essential nutrients in cell culture (SILEC) in Pan6-deficient yeast cells. Efficiency and consistency of labeling were also increased, likely due to the stringently defined and reproducible conditions used for yeast culture. The yeast SILEC method greatly enhances the ease of use and accessibility of labeled CoA thioesters and also provides proof of concept for generating other labeled metabolites in yeast mutants.


Asunto(s)
Acilcoenzima A/metabolismo , Técnicas de Cultivo de Célula/métodos , Ésteres/metabolismo , Marcaje Isotópico/métodos , Ácido Pantoténico/metabolismo , Saccharomyces cerevisiae/metabolismo , Acilcoenzima A/química , Animales , Vías Biosintéticas , Línea Celular Tumoral , Ratones , Ácido Pantoténico/química
3.
Appl Microbiol Biotechnol ; 90(2): 625-34, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21318364

RESUMEN

Clostridium thermocellum, an anaerobic, thermophilic, and ethanogenic bacterium produces a large cellulase complex termed the cellulosome and many free glycosyl hydrolases. Most cellulase genes scatter around the genome. We mapped the transcripts of the six-gene cluster celC-glyR3-licA-orf4-manB-celT and determined their transcription initiation sites by primer extension. Northern blot showed that celC-glyR3-licA were co-transcribed into a polycistronic messenger with the transcription initiation site at -20 bp. Furthermore, RT-PCR mapping showed that manB and celT, two cellulosomal genes immediately downstream, were co-transcribed into a bicistronic messenger with the initiation site at -233 bp. In contrast, rf4 was transcribed alone with the two initiation sites at -130 and -138 bp, respectively. Finally, quantitative RT-PCR analysis showed that celC, glyR3, and licA were coordinately induced by growing on laminarin, a ß-1,3 glucan. Gene expression peaked at the late exponential phase. Taking together with our previous report that GlyR3 binds to the celC promoter in the absence of laminaribiose, a ß-1,3 glucose dimer, these results indicate that celC, glyR3, and licA form an operon repressible by GlyR3 and inducible by laminaribiose, signaling the availability of ß-1,3 glucan. The celC operon is the first glycosyl hydrolase operon reported in this bacterium.


Asunto(s)
Proteínas Bacterianas/genética , Clostridium thermocellum/enzimología , Clostridium thermocellum/genética , Familia de Multigenes , Transcripción Genética , beta-Glucosidasa/genética , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Celulasa/genética , Celulasa/metabolismo , Disacáridos/metabolismo , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Glucanos , Manosa-6-Fosfato Isomerasa/genética , Datos de Secuencia Molecular , Complejos Multienzimáticos/genética , N-Glicosil Hidrolasas/metabolismo , Nucleotidiltransferasas/genética , Operón , Polisacáridos/metabolismo , Regiones Promotoras Genéticas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , beta-Glucosidasa/metabolismo
4.
Autophagy ; 5(1): 75-81, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18989095

RESUMEN

Piecemeal microautophagy of the nucleus (PMN) selectively removes and degrades small fragments of the Saccharomyces cerevisiae nucleus. Inter-organelle contact sites called nucleus-vacuole (NV) junctions determine the selectivity of PMN by establishing a platform for the biogenesis of PMN blebs and vesicles. PMN structures can be observed by fluorescence microscopy using GFP-tagged reporters; however, this approach is best supported with quantitative immunoblot assays of PMN-specific cargo degradation. Together, these assays should facilitate the further study of this fascinating but poorly understood autophagic process in different genetic backgrounds, physiological states, and environmental conditions.


Asunto(s)
Autofagia , Núcleo Celular/metabolismo , Técnicas Citológicas/métodos , Saccharomyces cerevisiae/citología , Proteínas Bacterianas/metabolismo , Estructuras de la Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Immunoblotting , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo
5.
Traffic ; 9(10): 1653-64, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18694438

RESUMEN

The endoplasmic reticulum (ER) in Saccharomyces cerevisiae is largely divided between perinuclear and cortical compartments. Yeast Nvj1 localizes exclusively to small patches on the perinuclear ER where it interacts with Vac8 in the vacuole membrane to form nucleus-vacuole (NV) junctions. Three regions of Nvj1 mediate the biogenesis of NV junctions. A membrane-spanning domain targets the protein to the ER. The C-terminus binds Vac8 in the vacuole membrane, which induces the clustering of both proteins into NV junctions. The luminal N-terminus is required for strict perinuclear localization. Three-dimensional cryo-electron tomography reveals that Nvj1 clamps the separation between the two nuclear membranes to half the width of bulk nuclear envelope. The N-terminus contains a hydrophobic sequence bracketed by basic residues that resembles outer mitochondrial membrane signal-anchors. The hydrophobic sequence can be scrambled or reversed without affecting function. Mutations that reduce the hydrophobicity of the core sequence or affect the distribution of basic residues cause mislocalization to the cortical ER. We conclude that the N-terminus of Nvj1 is a retention sequence that bridges the perinuclear lumen and inserts into the inner nuclear membrane.


Asunto(s)
Retículo Endoplásmico/metabolismo , Membrana Nuclear/metabolismo , Receptores Citoplasmáticos y Nucleares/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Secuencia de Aminoácidos , Núcleo Celular/metabolismo , Núcleo Celular/ultraestructura , Microscopía por Crioelectrón , Retículo Endoplásmico/ultraestructura , Genes Reporteros , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestructura , Microscopía Confocal , Datos de Secuencia Molecular , Membrana Nuclear/ultraestructura , Estructura Terciaria de Proteína , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Vacuolas/ultraestructura
6.
FEMS Yeast Res ; 5(2): 169-77, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15489200

RESUMEN

The replicative lifespan of Saccharomyces cerevisiae is determined by both genetic and environmental factors. Many of the same factors determine the lifespan of metazoan animals. The lack of fast and reliable lifespan assays has limited the pace of yeast aging research. In this study we describe a novel strategy for assaying replicative lifespan in yeast, and apply it in a screening of mutants that are resistant to pro-oxidants. The assay reproduces the lifespan-shortening effects of deleting SIR2 and of growth in the presence of paraquat, a pro-oxidant. The lifespan-increasing activity of resveratrol is also reproduced. Compared to current assays, this new strategy promises to significantly increase the possible number of replicative-lifespan determinations.


Asunto(s)
Saccharomyces cerevisiae/crecimiento & desarrollo , Recuento de Colonia Microbiana/métodos , Medios de Cultivo , Galactosa/metabolismo , Glucosa/metabolismo , Histona Desacetilasas/deficiencia , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Mutagénesis Insercional , Oxidantes/farmacología , Estrés Oxidativo/fisiología , Consumo de Oxígeno , Paraquat/farmacología , Resveratrol , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/deficiencia , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuina 2 , Sirtuinas/deficiencia , Sirtuinas/genética , Sirtuinas/metabolismo , Estilbenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA