Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 9(31): 26531-26538, 2017 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-28742322

RESUMEN

The mechanochemical reaction between copper and dimethyl disulfide is studied under well-controlled conditions in ultrahigh vacuum (UHV). Reaction is initiated by fast S-S bond scission to form adsorbed methyl thiolate species, and the reaction kinetics are reproduced by two subsequent elementary mechanochemical reaction steps, namely a mechanochemical decomposition of methyl thiolate to deposit sulfur on the surface and evolve small, gas-phase hydrocarbons, and sliding-induced oxidation of the copper by sulfur that regenerates vacant reaction sites. The steady-state reaction kinetics are monitored in situ from the variation in the friction force as the reaction proceeds and modeled using the elementary-step reaction rate constants found for monolayer adsorbates. The analysis yields excellent agreement between the experiment and the kinetic model, as well as correctly predicting the total amount of subsurface sulfur in the film measured using Auger spectroscopy and the sulfur depth distribution measured by angle-resolved X-ray photoelectron spectroscopy.

2.
Langmuir ; 28(15): 6322-7, 2012 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-22448894

RESUMEN

The surface chemistry of isopropoxy tetramethyl dioxaborolane (ITDB), tetramethyl dioxaborolane (TDB), and 2-propanol is studied on a clean Cu(111) single crystal using temperature-programmed desorption (TPD). 2-Propanol is found to have two competing reactions on the copper surface. Dehydration results in water and propene formation, and dehydrogenation results in the formation of acetone and hydrogen. ITDB directly adsorbed on the surface reacts completely and does not molecularly desorb. TDB and 2-propanol decompose desorbing mainly 2,3-dimethyl 2-butene and acetone, respectively. Both of those products desorb above room temperature and are present in TPDs of ITDB. An additional acetone desorption peak was observed for ITDB at higher temperatures than acetone desorption from 2-propanol. This higher temperature peak at ∼391 K was attributed to two acetone molecules forming from the tetramethyl end group resulting from a stronger bound surface species in ITDB compared to TDB despite their identical end groups. The copper surface seems to be reactive enough toward ITDB at room temperature that a potential boron-containing tribofilm could be produced for copper-copper sliding contacts. Despite their similarities, ITDB and TDB have different surface species present at room temperature, so their tribological properties will be investigated in the future.

3.
ACS Appl Mater Interfaces ; 3(3): 795-800, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21344941

RESUMEN

The frictional properties of a sliding copper-copper interface exposed to dimethyl disulfide (DMDS) are measured in UHV under conditions at which the interfacial temperature rise is <1 K. A significant reduction in friction is found from the clean-surface values and sulfur is found on the surface and below the surface in the wear scar region by Auger spectroscopy. Because the interfacial temperature rise under the experimental conditions used to measure friction is very small, tribofilm formation is not thermally induced. The novel, low-temperature tribofilm formation observed here is ascribed to a shear-induced intermixing of the surface layer(s) with the subsurface region as suggested using previous molecular dynamics simulations. Although the tribofilm contains predominantly sulfur, a small amount of carbon is also found in the film.


Asunto(s)
Cobre/química , Membranas Artificiales , Sulfuros/química , Fricción , Lubrificación , Ensayo de Materiales , Resistencia al Corte , Propiedades de Superficie , Temperatura
4.
Langmuir ; 26(21): 16375-80, 2010 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-20617851

RESUMEN

The surface chemistry of dimethyl disulfide (DMDS) is studied on a Cu(111) single crystal and a polished copper foil in ultrahigh vacuum as a basis for understanding its tribological chemistry using a combination of temperature-programmed desorption (TPD), reflection-absorption infrared spectroscopy (RAIRS), and X-ray photoelectron spectroscopy (XPS). Low-energy electron diffraction reveals that the polished foil becomes ordered on heating in vacuo and displays identical surface chemistry to that found on the Cu(111) surface. Dimethyl disulfide reacts with the copper surface at 80 K to form thiolate species. Heating the surface to ∼230 K causes a small portion of the thiolate species to decompose to form methyl groups adsorbed on the surface. Further heating results in methane and C(2) hydrocarbon desorption at ∼426 K, due to a reaction of adsorbed methyl species, to completely remove carbon from the surface and to deposit atomic sulfur.


Asunto(s)
Cobre/química , Disulfuros/química , Adsorción , Propiedades de Superficie , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA