Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Nat Commun ; 15(1): 1957, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38438348

RESUMEN

Almost all Glioblastoma (GBM) are either intrinsically resistant to the chemotherapeutical drug temozolomide (TMZ) or acquire therapy-induced mutations that cause chemoresistance and recurrence. The genome maintenance mechanisms responsible for GBM chemoresistance and hypermutation are unknown. We show that the E3 ubiquitin ligase RAD18 (a proximal regulator of TLS) is activated in a Mismatch repair (MMR)-dependent manner in TMZ-treated GBM cells, promoting post-replicative gap-filling and survival. An unbiased CRISPR screen provides an aerial map of RAD18-interacting DNA damage response (DDR) pathways deployed by GBM to tolerate TMZ genotoxicity. Analysis of mutation signatures from TMZ-treated GBM reveals a role for RAD18 in error-free bypass of O6mG (the most toxic TMZ-induced lesion), and error-prone bypass of other TMZ-induced lesions. Our analyses of recurrent GBM patient samples establishes a correlation between low RAD18 expression and hypermutation. Taken together we define molecular underpinnings for the hallmark tumorigenic phenotypes of TMZ-treated GBM.


Asunto(s)
Glioblastoma , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Síntesis Translesional de ADN , Reparación de la Incompatibilidad de ADN/genética , Resistencia a Antineoplásicos/genética , Temozolomida/farmacología , Proteínas de Unión al ADN , Ubiquitina-Proteína Ligasas/genética
2.
J Clin Invest ; 133(22)2023 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-37966120

RESUMEN

Glioblastoma (GBM) tumor-associated macrophages (TAMs) provide a major immune cell population contributing to growth and immunosuppression via the production of proinflammatory factors, including IL-1. In this issue of the JCI, Chen, Giotti, and colleagues investigated loss of ll1b in the immune tumor microenvironment (TME) in GBM models driven by PDGFB expression and Nf1 knockdown. Survival was only improved in PDGFB-driven GBM models, suggesting that tumor cell genotype influenced the immune TME. IL-1ß in the TME increased PDGFB-driven GBM growth by increasing tumor-derived NF-κB, expression of monocyte chemoattractants, and increased infiltration of bone marrow-derived myeloid cells (BMDMs). In contrast, no requirement for IL-1ß was evident in Nf1-silenced tumors due to high basal levels of NF-κB and monocyte chemoattractants and increased infiltration of BMDM and TAMs. Notably, treatment of mice bearing PDGFB-driven GBM with anti-IL-1ß or an IL1R1 antagonist extended survival. These findings suggest that effective clinical immunotherapy may require differential targeting strategies.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Ratones , Becaplermina/metabolismo , Neoplasias Encefálicas/patología , Factores Quimiotácticos/metabolismo , Citocinas/metabolismo , Glioblastoma/patología , Macrófagos/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-sis/metabolismo , Microambiente Tumoral
3.
Int J Mol Sci ; 24(18)2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37761989

RESUMEN

Glioblastoma (GBM) remains an incurable disease with an extremely high five-year recurrence rate. We studied apoptosis in glioma stem cells (GSCs) in response to HDAC inhibition (HDACi) combined with MEK1/2 inhibition (MEKi) or BCL-2 family inhibitors. MEKi effectively combined with HDACi to suppress growth, induce cell cycle defects, and apoptosis, as well as to rescue the expression of the pro-apoptotic BH3-only proteins BIM and BMF. A RNAseq analysis of GSCs revealed that HDACi repressed the pro-survival BCL-2 family genes MCL1 and BCL-XL. We therefore replaced MEKi with BCL-2 family inhibitors and observed enhanced apoptosis. Conversely, a ligand for the cancer stem cell receptor CD44 led to reductions in BMF, BIM, and apoptosis. Our data strongly support further testing of HDACi in combination with MEKi or BCL-2 family inhibitors in glioma.

4.
Cell Rep Med ; 4(6): 101082, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37343523

RESUMEN

Genetic alterations help predict the clinical behavior of diffuse gliomas, but some variability remains uncorrelated. Here, we demonstrate that haploinsufficient deletions of chromatin-bound tumor suppressor NFKB inhibitor alpha (NFKBIA) display distinct patterns of occurrence in relation to other genetic markers and are disproportionately present at recurrence. NFKBIA haploinsufficiency is associated with unfavorable patient outcomes, independent of genetic and clinicopathologic predictors. NFKBIA deletions reshape the DNA and histone methylome antipodal to the IDH mutation and induce a transcriptome landscape partly reminiscent of H3K27M mutant pediatric gliomas. In IDH mutant gliomas, NFKBIA deletions are common in tumors with a clinical course similar to that of IDH wild-type tumors. An externally validated nomogram model for estimating individual patient survival in IDH mutant gliomas confirms that NFKBIA deletions predict comparatively brief survival. Thus, NFKBIA haploinsufficiency aligns with distinct epigenome changes, portends a poor prognosis, and should be incorporated into models predicting the disease fate of diffuse gliomas.


Asunto(s)
Neoplasias Encefálicas , Glioma , Niño , Humanos , Neoplasias Encefálicas/genética , Epigenoma , Glioma/genética , Glioma/patología , Haploinsuficiencia/genética , Mutación/genética , Inhibidor NF-kappaB alfa/genética , Isocitrato Deshidrogenasa
5.
J Neurochem ; 165(5): 682-700, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37129420

RESUMEN

Enhancing protein O-GlcNAcylation by pharmacological inhibition of the enzyme O-GlcNAcase (OGA), which removes the O-GlcNAc modification from proteins, has been explored in mouse models of amyloid-beta and tau pathology. However, the O-GlcNAcylation-dependent link between gene expression and neurological behavior remains to be explored. Using chronic administration of Thiamet G (TG, an OGA inhibitor) in vivo, we used a protocol designed to relate behavior with the transcriptome and selected biochemical parameters from the cortex of individual animals. TG-treated mice showed improved working memory as measured using a Y-maze test. RNA sequencing analysis revealed 151 top differentially expressed genes with a Log2fold change >0.33 and adjusted p-value <0.05. Top TG-dependent upregulated genes were related to learning, cognition and behavior, while top downregulated genes were related to IL-17 signaling, inflammatory response and chemotaxis. Additional pathway analysis uncovered 3 pathways, involving gene expression including 14 cytochrome c oxidase subunits/regulatory components, chaperones or assembly factors, and 5 mTOR (mechanistic target of rapamycin) signaling factors. Multivariate Kendall correlation analyses of behavioral tests and the top TG-dependent differentially expressed genes revealed 91 statistically significant correlations in saline-treated mice and 70 statistically significant correlations in TG-treated mice. These analyses provide a network regulation landscape that is important in relating the transcriptome to behavior and the potential impact of the O-GlcNAC pathway.


Asunto(s)
Procesamiento Proteico-Postraduccional , Transducción de Señal , Ratones , Animales , Modelos Animales de Enfermedad , Sirolimus , Expresión Génica
6.
bioRxiv ; 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36865329

RESUMEN

Diffuse midline glioma (DMG) is a leading cause of brain tumor death in children. In addition to hallmark H3.3K27M mutations, significant subsets also harbor alterations of other genes, such as TP53 and PDGFRA. Despite the prevalence of H3.3K27M, the results of clinical trials in DMG have been mixed, possibly due to the lack of models recapitulating its genetic heterogeneity. To address this gap, we developed human iPSC-derived tumor models harboring TP53R248Q with or without heterozygous H3.3K27M and/or PDGFRAD842V overexpression. The combination of H3.3K27M and PDGFRAD842V resulted in more proliferative tumors when gene-edited neural progenitor (NP) cells were implanted into mouse brains compared to NP with either mutation alone. Transcriptomic comparison of tumors and their NP cells of origin identified conserved JAK/STAT pathway activation across genotypes as characteristic of malignant transformation. Conversely, integrated genome-wide epigenomic and transcriptomic analyses, as well as rational pharmacologic inhibition, revealed targetable vulnerabilities unique to the TP53R248Q; H3.3K27M; PDGFRAD842V tumors and related to their aggressive growth phenotype. These include AREG-mediated cell cycle control, altered metabolism, and vulnerability to combination ONC201/trametinib treatment. Taken together, these data suggest that cooperation between H3.3K27M and PDGFRA influences tumor biology, underscoring the need for better molecular stratification in DMG clinical trials.

7.
Nat Commun ; 14(1): 1459, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36927729

RESUMEN

There has been considerable scientific effort dedicated to understanding the biologic consequence and therapeutic implications of aberrant tryptophan metabolism in brain tumors and neurodegenerative diseases. A majority of this work has focused on the upstream metabolism of tryptophan; however, this has resulted in limited clinical application. Using global metabolomic profiling of patient-derived brain tumors, we identify the downstream metabolism of tryptophan and accumulation of quinolinate (QA) as a metabolic node in glioblastoma and demonstrate its critical role in promoting immune tolerance. QA acts as a metabolic checkpoint in glioblastoma by inducing NMDA receptor activation and Foxo1/PPARγ signaling in macrophages, resulting in a tumor supportive phenotype. Using a genetically-engineered mouse model designed to inhibit production of QA, we identify kynureninase as a promising therapeutic target to revert the potent immune suppressive microenvironment in glioblastoma. These findings offer an opportunity to revisit the biologic consequence of this pathway as it relates to oncogenesis and neurodegenerative disease and a framework for developing immune modulatory agents to further clinical gains in these otherwise incurable diseases.


Asunto(s)
Productos Biológicos , Neoplasias Encefálicas , Glioblastoma , Enfermedades Neurodegenerativas , Ratones , Animales , Glioblastoma/genética , Triptófano/metabolismo , Ácido Quinolínico/metabolismo , PPAR gamma/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Macrófagos/metabolismo , Neoplasias Encefálicas/patología , Tolerancia Inmunológica , Productos Biológicos/metabolismo , Microambiente Tumoral
9.
Cancers (Basel) ; 14(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36428642

RESUMEN

Glioblastoma (GBM) represents an aggressive and immune-resistant cancer. Preclinical investigations have identified anti-tumor activity of a ketogenic diet (KD) potentially being used to target GBM's glycolytic phenotype. Since immune cells in the microenvironment have a similar reliance upon nutrients to perform their individual functions, we sought to determine if KD influenced the immune landscape of GBM. Consistent with previous publications, KD improved survival in GBM in an immune-competent murine model. Immunophenotyping of tumors identified KD-influenced macrophage polarization, with a paradoxical 50% increase in immune-suppressive M2-like-macrophages and a decrease in pro-inflammatory M1-like-macrophages. We recapitulated KD in vitro using a modified cell culture based on metabolomic profiling of serum in KD-fed mice, mechanistically linking the observed changes in macrophage polarization to PPARγ-activation. We hypothesized that parallel increases in M2-macrophage polarization tempered the therapeutic benefit of KD in GBM. To test this, we performed investigations combining KD with the CSF-1R inhibitor (BLZ945), which influences macrophage polarization. The combination demonstrated a striking improvement in survival and correlative studies confirmed BLZ945 normalized KD-induced changes in macrophage polarization. Overall, KD demonstrates antitumor activity in GBM; however, its efficacy is attenuated by promoting an immunosuppressive phenotype in macrophages. Combinatorial strategies designed to modulate macrophage polarization represent a rational approach to improve the anti-tumor activity of KD in GBM.

10.
JCI Insight ; 7(21)2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-36345944

RESUMEN

One of the least-investigated areas of brain pathology research is glycosylation, which is a critical regulator of cell surface protein structure and function. ß-Galactoside α2,6-sialyltransferase (ST6GAL1) is the primary enzyme that α2,6 sialylates N-glycosylated proteins destined for the plasma membrane or secretion, thereby modulating cell signaling and behavior. We demonstrate a potentially novel, protumorigenic role for α2,6 sialylation and ST6GAL1 in the deadly brain tumor glioblastoma (GBM). GBM cells with high α2,6 sialylation exhibited increased in vitro growth and self-renewal capacity and decreased mouse survival when orthotopically injected. α2,6 Sialylation was regulated by ST6GAL1 in GBM, and ST6GAL1 was elevated in brain tumor-initiating cells (BTICs). Knockdown of ST6GAL1 in BTICs decreased in vitro growth, self-renewal capacity, and tumorigenic potential. ST6GAL1 regulates levels of the known BTIC regulators PDGF Receptor ß (PDGFRB), Activated Leukocyte Cell Adhesion Molecule, and Neuropilin, which were confirmed to bind to a lectin-recognizing α2,6 sialic acid. Loss of ST6GAL1 was confirmed to decrease PDGFRB α2,6 sialylation, total protein levels, and the induction of phosphorylation by PDGF-BB. Thus, ST6GAL1-mediated α2,6 sialylation of a select subset of cell surface receptors, including PDGFRB, increases GBM growth.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Ratones , Ácido N-Acetilneuramínico/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal , beta-D-Galactósido alfa 2-6-Sialiltransferasa
11.
Neuro Oncol ; 24(12): 2035-2062, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36125064

RESUMEN

The Lazarus effect is a rare condition that happens when someone seemingly dead shows signs of life. The epidermal growth factor receptor (EGFR) represents a target in the fatal neoplasm glioblastoma (GBM) that through a series of negative clinical trials has prompted a vocal subset of the neuro-oncology community to declare this target dead. However, an argument can be made that the core tenets of precision oncology were overlooked in the initial clinical enthusiasm over EGFR as a therapeutic target in GBM. Namely, the wrong drugs were tested on the wrong patients at the wrong time. Furthermore, new insights into the biology of EGFR in GBM vis-à-vis other EGFR-driven neoplasms, such as non-small cell lung cancer, and development of novel GBM-specific EGFR therapeutics resurrects this target for future studies. Here, we will examine the distinct EGFR biology in GBM, how it exacerbates the challenge of treating a CNS neoplasm, how these unique challenges have influenced past and present EGFR-targeted therapeutic design and clinical trials, and what adjustments are needed to therapeutically exploit EGFR in this devastating disease.


Asunto(s)
Neoplasias Encefálicas , Carcinoma de Pulmón de Células no Pequeñas , Glioblastoma , Neoplasias Pulmonares , Humanos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Receptores ErbB/metabolismo , Glioblastoma/metabolismo , Medicina de Precisión
12.
Cell Rep ; 40(4): 111066, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35905726

RESUMEN

Growth factors in tumor environments are regulators of cell survival and metastasis. Here, we reveal the dichotomy between TGF-ß superfamily growth factors BMP and TGF-ß/activin and their downstream SMAD effectors. Gene expression profiling uncovers SOX2 as a key contextual signaling node regulated in an opposing manner by BMP2, -4, and -9 and TGF-ß and activin A to impact anchorage-independent cell survival. We find that SOX2 is repressed by BMPs, leading to a reduction in intraperitoneal tumor burden and improved survival of tumor-bearing mice. Repression of SOX2 is driven by SMAD1-dependent histone H3K27me3 recruitment and DNA methylation at SOX2's promoter. Conversely, TGF-ß, which is elevated in patient ascites, and activin A can promote SOX2 expression and anchorage-independent survival by SMAD3-dependent histone H3K4me3 recruitment. Our findings identify SOX2 as a contextual and contrastingly regulated node downstream of TGF-ß members controlling anchorage-independent survival and metastasis in ovarian cancers.


Asunto(s)
Histonas , Neoplasias , Factores de Transcripción SOXB1/metabolismo , Animales , Anoicis , Proteínas Morfogenéticas Óseas/metabolismo , Ratones , Proteína Smad1/metabolismo , Proteína smad3/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
13.
Vet Comp Oncol ; 20(4): 881-889, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35856268

RESUMEN

Histopathological evaluation of tumours is a subjective process, but studies of inter-pathologist agreement are uncommon in veterinary medicine. The Comparative Brain Tumour Consortium (CBTC) recently published diagnostic criteria for canine gliomas. Our objective was to assess the degree of inter-pathologist agreement on intracranial canine gliomas, utilising the CBTC diagnostic criteria in a cohort of eighty-five samples from dogs with an archival diagnosis of intracranial glioma. Five pathologists independently reviewed H&E and immunohistochemistry sections and provided a diagnosis and grade. Percentage agreement and kappa statistics were calculated to measure inter-pathologist agreement between pairs and amongst the entire group. A consensus diagnosis of glioma subtype and grade was achieved for 71/85 (84%) cases. For these cases, percentage agreement on combined diagnosis (subtype and grade), subtype only and grade only were 66%, 80% and 82%, respectively. Kappa statistics for the same were 0.466, 0.542 and 0.516, respectively. Kappa statistics for oligodendroglioma, astrocytoma and undefined glioma were 0.585, 0.566 and 0.280 and were 0.516 for both low-grade and high-grade tumours. Kappa statistics amongst pairs of pathologists for combined diagnosis varied from 0.352 to 0.839. 8 % of archival oligodendrogliomas and 61% of archival astrocytomas were reclassified as another entity after review. Inter-pathologist agreement utilising CBTC guidelines for canine glioma was moderate overall but varied from fair to almost perfect between pairs of pathologists. Agreement was similar for oligodendrogliomas and astrocytomas but lower for undefined gliomas. These results are similar to pathologist agreement in human glioma studies and with other tumour entities in veterinary medicine.


Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Enfermedades de los Perros , Glioma , Oligodendroglioma , Humanos , Animales , Perros , Oligodendroglioma/diagnóstico , Oligodendroglioma/veterinaria , Oligodendroglioma/patología , Patólogos , Enfermedades de los Perros/diagnóstico , Enfermedades de los Perros/patología , Glioma/diagnóstico , Glioma/veterinaria , Glioma/patología , Astrocitoma/veterinaria , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/veterinaria , Neoplasias Encefálicas/patología
14.
JCI Insight ; 7(16)2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35852858

RESUMEN

Metastatic urothelial carcinoma is generally incurable with current systemic therapies. Chromatin modifiers are frequently mutated in bladder cancer, with ARID1A-inactivating mutations present in about 20% of tumors. EZH2, a histone methyltransferase, acts as an oncogene that functionally opposes ARID1A. In addition, PI3K signaling is activated in more than 20% of bladder cancers. Using a combination of in vitro and in vivo data, including patient-derived xenografts, we show that ARID1A-mutant tumors were more sensitive to EZH2 inhibition than ARID1A WT tumors. Mechanistic studies revealed that (a) ARID1A deficiency results in a dependency on PI3K/AKT/mTOR signaling via upregulation of a noncanonical PI3K regulatory subunit, PIK3R3, and downregulation of MAPK signaling and (b) EZH2 inhibitor sensitivity is due to upregulation of PIK3IP1, a protein inhibitor of PI3K signaling. We show that PIK3IP1 inhibited PI3K signaling by inducing proteasomal degradation of PIK3R3. Furthermore, ARID1A-deficient bladder cancer was sensitive to combination therapies with EZH2 and PI3K inhibitors in a synergistic manner. Thus, our studies suggest that bladder cancers with ARID1A mutations can be treated with inhibitors of EZH2 and/or PI3K and revealed mechanistic insights into the role of noncanonical PI3K constituents in bladder cancer biology.


Asunto(s)
Carcinoma de Células Transicionales , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética , Neoplasias de la Vejiga Urinaria , Proteínas de Unión al ADN/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Transducción de Señal , Factores de Transcripción/metabolismo , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/genética
15.
JCI Insight ; 7(16)2022 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-35852875

RESUMEN

Key molecular regulators of acquired radiation resistance in recurrent glioblastoma (GBM) are largely unknown, with a dearth of accurate preclinical models. To address this, we generated 8 GBM patient-derived xenograft (PDX) models of acquired radiation therapy-selected (RTS) resistance compared with same-patient, treatment-naive (radiation-sensitive, unselected; RTU) PDXs. These likely unique models mimic the longitudinal evolution of patient recurrent tumors following serial radiation therapy. Indeed, while whole-exome sequencing showed retention of major genomic alterations in the RTS lines, we did detect a chromosome 12q14 amplification that was associated with clinical GBM recurrence in 2 RTS models. A potentially novel bioinformatics pipeline was applied to analyze phenotypic, transcriptomic, and kinomic alterations, which identified long noncoding RNAs (lncRNAs) and targetable, PDX-specific kinases. We observed differential transcriptional enrichment of DNA damage repair pathways in our RTS models, which correlated with several lncRNAs. Global kinomic profiling separated RTU and RTS models, but pairwise analyses indicated that there are multiple molecular routes to acquired radiation resistance. RTS model-specific kinases were identified and targeted with clinically relevant small molecule inhibitors. This cohort of in vivo RTS patient-derived models will enable future preclinical therapeutic testing to help overcome the treatment resistance seen in patients with GBM.


Asunto(s)
Glioblastoma , ARN Largo no Codificante , Animales , Modelos Animales de Enfermedad , Genómica , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/radioterapia , Humanos , Recurrencia Local de Neoplasia , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Life Sci Alliance ; 5(11)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35820706

RESUMEN

Metastatic growth of ovarian cancer cells into the peritoneal cavity requires adaptation to various cellular stress factors to facilitate cell survival and growth. Here, we demonstrate the role of PVT1, one such stress induced long non-coding RNA, in ovarian cancer growth and metastasis. PVT1 is an amplified and overexpressed lncRNA in ovarian cancer with strong predictive value for survival and response to targeted therapeutics. We find that expression of PVT1 is regulated by tumor cells in response to cellular stress, particularly loss of cell-cell contacts and changes in matrix rigidity occurring in a YAP1-dependent manner. Induction of PVT1 promotes tumor cell survival, growth, and migration. Conversely, reducing PVT1 levels robustly abrogates metastatic behavior and tumor cell dissemination in cell lines and syngeneic transplantation models in vivo. We find that reducing PVT1 causes widespread changes in the transcriptome leading to alterations in cellular stress response and metabolic pathways including doxorubicin metabolism, which impacts chemosensitivity. Together, these findings implicate PVT1 as a promising therapeutic target to suppress metastasis and chemoresistance in ovarian cancer.


Asunto(s)
Neoplasias Ováricas , ARN Largo no Codificante , Proliferación Celular/fisiología , Resistencia a Antineoplásicos , Femenino , Humanos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
18.
Hematol Oncol Clin North Am ; 36(1): 1-21, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34763992

RESUMEN

In 2016, the World Health Organization Classification of CNS Tumors introduced molecular abnormalities that refined tumor diagnoses. Around this time, the introduction of large scale genetic mutational analyses quickly advanced our knowledge of recurrent abnormalities in disease. In 2017, the C-IMPACT group was established to render expert consensus opinions regarding the application of molecular findings into central nervous system tumor diagnoses. C-IMPACT have presented their recommendations in 7 peer-reviewed publications; this article details those recommendations that are expected to be incorporated into the upcoming fifth edition of the World Health Organization classification.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Recurrencia Local de Neoplasia , Neoplasias del Sistema Nervioso Central/genética , Humanos , Organización Mundial de la Salud
19.
Vet Pathol ; 58(5): 952-963, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34196247

RESUMEN

Evasion of the immune response is an integral part of the pathogenesis of glioma. In humans, important mechanisms of immune evasion include recruitment of regulatory T cells (Tregs) and polarization of macrophages toward an M2 phenotype. Canine glioma has a robust immune cell infiltrate that has not been extensively characterized. The purpose of this study was to determine the distribution of immune cells infiltrating spontaneous intracranial canine gliomas. Seventy-three formalin-fixed, paraffin-embedded tumor samples were evaluated using immunohistochemistry for CD3, forkhead box 3 (FOXP3), CD20, Iba1, calprotectin (Mac387), CD163, and indoleamine 2,3-dioxygenase (IDO). Immune cell infiltration was present in all tumors. Low-grade and high-grade gliomas significantly differed in the numbers of FoxP3+ cells, Mac387+ cells, and CD163+ cells (P = .006, .01, and .01, respectively). Considering all tumors, there was a significant increase in tumor area fraction of CD163 compared to Mac387 (P < .0001), and this ratio was greater in high-grade tumors than in low-grade tumors (P = .005). These data warrant further exploration into the roles of macrophage repolarization or Treg interference therapy in canine glioma.


Asunto(s)
Enfermedades de los Perros , Glioma , Animales , Antígenos CD20 , Perros , Glioma/veterinaria , Inmunohistoquímica , Linfocitos Infiltrantes de Tumor , Linfocitos T Reguladores
20.
In Vivo ; 35(1): 119-129, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33402457

RESUMEN

AIM: To use inhibition of colony-stimulating factor-1 receptor (CSF-1R) to target tumor-associated macrophages (TAMs) and improve the efficacy of radiotherapy in glioblastoma (GBM). MATERIALS AND METHODS: The CSF-1R inhibitor BLZ-945 was used to examine the impact of CSF-1R inhibition on M2 polarization in vitro. Using an orthotopic, immunocompetent GBM model, mice were treated with vehicle, RT, BLZ-945, or RT plus BLZ-945. RESULTS: BLZ-945 reduced M2 polarization in vitro. BLZ-945 alone did not improve median overall survival (mOS=29 days) compared to control mice (mOS=27 days). RT improved survival (mOS=45 days; p=0.02), while RT plus BLZ-945 led to the longest survival (mOS=not reached; p=0.005). Resected tumors had a relatively large population of M2 TAMs in GBM at baseline, which was increased in response to RT. BLZ-945 reduced RT-induced M2 infiltration. CONCLUSION: Inhibition of CSF-1R improved response to RT in the treatment of GBM and may represent a promising strategy to improve RT-induced antitumor immune responses.


Asunto(s)
Glioblastoma , Animales , Factores Estimulantes de Colonias , Glioblastoma/tratamiento farmacológico , Glioblastoma/radioterapia , Macrófagos , Ratones , Proteínas Tirosina Quinasas Receptoras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...