Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Protein Sci ; 33(1): e4850, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38038838

RESUMEN

Protein structure prediction has emerged as a core technology for understanding biomolecules and their interactions. Here, we combine homology-based structure prediction with molecular phylogenetic analysis to study the evolution of electrostatic membrane binding among the vertebrate synaptotagmin-like protein (Slp) family. Slp family proteins play key roles in the membrane trafficking of large dense-core secretory vesicles. Our previous experimental and computational study found that the C2A domain of Slp-4 (also called granuphilin) binds with high affinity to anionic phospholipids in the cytoplasmic leaflet of the plasma membrane through a large positively charged protein surface centered on a cluster of phosphoinositide-binding lysine residues. Because this surface contributes greatly to Slp-4 C2A domain membrane binding, we hypothesized that the net charge on the surface might be evolutionarily conserved. To test this hypothesis, the known C2A sequences of Slp-4 among vertebrates were organized by class (from mammalia to pisces) using molecular phylogenetic analysis. Consensus sequences for each class were then identified and used to generate homology structures, from which Poisson-Boltzmann electrostatic potentials were calculated. For comparison, homology structures and electrostatic potentials were also calculated for the five human Slp protein family members. The results demonstrate that the charge on the membrane-binding surface is highly conserved throughout the evolution of Slp-4, and more highly conserved than many individual residues among the human Slp family paralogs. Such molecular phylogenetic-driven computational analysis can help to describe the evolution of electrostatic interactions between proteins and membranes which are crucial for their function.


Asunto(s)
Proteínas de Unión al Calcio , Glicoproteínas de Membrana , Animales , Humanos , Filogenia , Proteínas de Unión al Calcio/metabolismo , Electricidad Estática , Glicoproteínas de Membrana/química , Sinaptotagmina I/metabolismo , Secuencia de Aminoácidos , Proteínas del Tejido Nervioso/química , Estructura Terciaria de Proteína , Calcio/metabolismo
2.
bioRxiv ; 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37502915

RESUMEN

Predicting elemental cycles and maintaining water quality under increasing anthropogenic influence requires understanding the spatial drivers of river microbiomes. However, the unifying microbial processes governing river biogeochemistry are hindered by a lack of genome-resolved functional insights and sampling across multiple rivers. Here we employed a community science effort to accelerate the sampling, sequencing, and genome-resolved analyses of river microbiomes to create the Genome Resolved Open Watersheds database (GROWdb). This resource profiled the identity, distribution, function, and expression of thousands of microbial genomes across rivers covering 90% of United States watersheds. Specifically, GROWdb encompasses 1,469 microbial species from 27 phyla, including novel lineages from 10 families and 128 genera, and defines the core river microbiome for the first time at genome level. GROWdb analyses coupled to extensive geospatial information revealed local and regional drivers of microbial community structuring, while also presenting a myriad of foundational hypotheses about ecosystem function. Building upon the previously conceived River Continuum Concept 1 , we layer on microbial functional trait expression, which suggests the structure and function of river microbiomes is predictable. We make GROWdb available through various collaborative cyberinfrastructures 2, 3 so that it can be widely accessed across disciplines for watershed predictive modeling and microbiome-based management practices.

3.
bioRxiv ; 2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-37502952

RESUMEN

Protein structure prediction has emerged as a core technology for understanding biomolecules and their interactions. Here, we combine homology-based structure prediction with molecular phylogenetic analysis to study the evolution of electrostatic membrane binding among vertebrate synaptotagmin-like proteins (Slps). Slp family proteins play key roles in the membrane trafficking of large dense-core secretory vesicles. Our previous experimental and computational study found that the C2A domain of Slp-4 (also called granuphilin) binds with high affinity to anionic phospholipids in the cytoplasmic leaflet of the plasma membrane through a large positively charged protein surface centered on a cluster of phosphoinositide-binding lysine residues. Because this surface contributes greatly to Slp-4 C2A domain membrane binding, we hypothesized that the net charge on the surface might be evolutionarily conserved. To test this hypothesis, the known C2A sequences of Slp-4 among vertebrates were organized by class (from mammalia to pisces) using molecular phylogenetic analysis. Consensus sequences for each class were then identified and used to generate homology structures, from which Poisson-Boltzmann electrostatic potentials were calculated. For comparison, homology structures and electrostatic potentials were also calculated for the five human Slp protein family members. The results demonstrate that the charge on the membrane-binding surface is highly conserved throughout the evolution of Slp-4, and more highly conserved than many individual residues among the human Slp family paralogs. Such molecular phylogenetic-driven computational analysis can help to describe the evolution of electrostatic interactions between proteins and membranes which are crucial for their function.

4.
Bioinformatics ; 39(4)2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36857575

RESUMEN

Microbial genome annotation is the process of identifying structural and functional elements in DNA sequences and subsequently attaching biological information to those elements. DRAM is a tool developed to annotate bacterial, archaeal, and viral genomes derived from pure cultures or metagenomes. DRAM goes beyond traditional annotation tools by distilling multiple gene annotations to genome level summaries of functional potential. Despite these benefits, a downside of DRAM is the requirement of large computational resources, which limits its accessibility. Further, it did not integrate with downstream metabolic modeling tools that require genome annotation. To alleviate these constraints, DRAM and the viral counterpart, DRAM-v, are now available and integrated with the freely accessible KBase cyberinfrastructure. With kb_DRAM users can generate DRAM annotations and functional summaries from microbial or viral genomes in a point-and-click interface, as well as generate genome-scale metabolic models from DRAM annotations. AVAILABILITY AND IMPLEMENTATION: For kb_DRAM users, the kb_DRAM apps on KBase can be found in the catalog at https://narrative.kbase.us/#catalog/modules/kb_DRAM. For kb_DRAM users, a tutorial workflow with all documentation is available at https://narrative.kbase.us/narrative/129480. For kb_DRAM developers, software is available at https://github.com/shafferm/kb_DRAM.


Asunto(s)
Bacterias , Programas Informáticos , Anotación de Secuencia Molecular , Bacterias/genética , Archaea/genética , Metabolómica
5.
mSystems ; 4(6)2019 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-31796563

RESUMEN

Wetland soils are one of the largest natural contributors to the emission of methane, a potent greenhouse gas. Currently, microbial contributions to methane emissions from these systems emphasize the roles of acetoclastic and hydrogenotrophic methanogens, while less frequently considering methyl-group substrates (e.g., methanol and methylamines). Here, we integrated laboratory and field experiments to explore the potential for methylotrophic methanogenesis in Old Woman Creek (OWC), a temperate freshwater wetland located in Ohio, USA. We first demonstrated the capacity for methylotrophic methanogenesis in these soils using laboratory soil microcosms amended with trimethylamine. However, subsequent field porewater nuclear magnetic resonance (NMR) analyses to identify methanogenic substrates failed to detect evidence for methylamine compounds in soil porewaters, instead noting the presence of the methylotrophic substrate methanol. Accordingly, our wetland soil-derived metatranscriptomic data indicated that methanol utilization by the Methanomassiliicoccaceae was the likely source of methylotrophic methanogenesis. Methanomassiliicoccaceae relative contributions to mcrA transcripts nearly doubled with depth, accounting for up to 8% of the mcrA transcripts in 25-cm-deep soils. Longitudinal 16S rRNA amplicon and mcrA gene surveys demonstrated that Methanomassiliicoccaceae were stably present over 2 years across lateral and depth gradients in this wetland. Meta-analysis of 16S rRNA sequences similar (>99%) to OWC Methanomassiliicoccaceae in public databases revealed a global distribution, with a high representation in terrestrial soils and sediments. Together, our results demonstrate that methylotrophic methanogenesis likely contributes to methane flux from climatically relevant wetland soils.IMPORTANCE Understanding the sources and controls on microbial methane production from wetland soils is critical to global methane emission predictions, particularly in light of changing climatic conditions. Current biogeochemical models of methanogenesis consider only acetoclastic and hydrogenotrophic sources and exclude methylotrophic methanogenesis, potentially underestimating microbial contributions to methane flux. Our multi-omic results demonstrated that methylotrophic methanogens of the family Methanomassiliicoccaceae were present and active in a freshwater wetland, with metatranscripts indicating that methanol, not methylamines, was the likely substrate under the conditions measured here. However, laboratory experiments indicated the potential for other methanogens to become enriched in response to trimethylamine, revealing the reservoir of methylotrophic methanogenesis potential residing in these soils. Collectively, our approach used coupled field and laboratory investigations to illuminate metabolisms influencing the terrestrial microbial methane cycle, thereby offering direction for increased realism in predictive process-oriented models of methane flux in wetland soils.

6.
Genome Biol Evol ; 10(9): 2380-2393, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30060184

RESUMEN

Diphthamide is a modified histidine residue which is uniquely present in archaeal and eukaryotic elongation factor 2 (EF-2), an essential GTPase responsible for catalyzing the coordinated translocation of tRNA and mRNA through the ribosome. In part due to the role of diphthamide in maintaining translational fidelity, it was previously assumed that diphthamide biosynthesis genes (dph) are conserved across all eukaryotes and archaea. Here, comparative analysis of new and existing genomes reveals that some archaea (i.e., members of the Asgard superphylum, Geoarchaea, and Korarchaeota) and eukaryotes (i.e., parabasalids) lack dph. In addition, while EF-2 was thought to exist as a single copy in archaea, many of these dph-lacking archaeal genomes encode a second EF-2 paralog missing key residues required for diphthamide modification and for normal translocase function, perhaps suggesting functional divergence linked to loss of diphthamide biosynthesis. Interestingly, some Heimdallarchaeota previously suggested to be most closely related to the eukaryotic ancestor maintain dph genes and a single gene encoding canonical EF-2. Our findings reveal that the ability to produce diphthamide, once thought to be a universal feature in archaea and eukaryotes, has been lost multiple times during evolution, and suggest that anticipated compensatory mechanisms evolved independently.


Asunto(s)
Archaea/genética , Histidina/análogos & derivados , Parabasalidea/genética , Factor 2 de Elongación Peptídica/genética , Archaea/metabolismo , Vías Biosintéticas , Evolución Molecular , Genoma Arqueal , Histidina/genética , Histidina/metabolismo , Modelos Moleculares , Parabasalidea/metabolismo , Factor 2 de Elongación Peptídica/metabolismo
7.
Curr Biol ; 27(24): R1307-R1309, 2017 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-29257962

RESUMEN

Advances in metagenomic sequencing and bioinformatics have vastly expanded our knowledge of microbial phylogenetic and functional diversity. In this issue, Dudek et al. show that shotgun metagenomic sequencing of a less-well-studied environment - dolphin gums - uncovers surprising novelty in the bacterial tree of life, underscoring the promise of future discovery.


Asunto(s)
Delfines , Microbiota , Animales , Biodiversidad , Boca , Filogenia
8.
Nat Commun ; 8(1): 1567, 2017 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-29146959

RESUMEN

The current paradigm, widely incorporated in soil biogeochemical models, is that microbial methanogenesis can only occur in anoxic habitats. In contrast, here we show clear geochemical and biological evidence for methane production in well-oxygenated soils of a freshwater wetland. A comparison of oxic to anoxic soils reveal up to ten times greater methane production and nine times more methanogenesis activity in oxygenated soils. Metagenomic and metatranscriptomic sequencing recover the first near-complete genomes for a novel methanogen species, and show acetoclastic production from this organism was the dominant methanogenesis pathway in oxygenated soils. This organism, Candidatus Methanothrix paradoxum, is prevalent across methane emitting ecosystems, suggesting a global significance. Moreover, in this wetland, we estimate that up to 80% of methane fluxes could be attributed to methanogenesis in oxygenated soils. Together, our findings challenge a widely held assumption about methanogenesis, with significant ramifications for global methane estimates and Earth system modeling.

9.
Environ Microbiol ; 19(6): 2192-2209, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28217877

RESUMEN

Despite being key contributors to biogeochemical processes, archaea are frequently outnumbered by bacteria, and consequently are underrepresented in combined molecular surveys. Here, we demonstrate an approach to concurrently survey the archaea alongside the bacteria with high-resolution 16S rRNA gene sequencing, linking these community data to geochemical parameters. We applied this integrated analysis to hydric soils sampled across a model methane-emitting freshwater wetland. Geochemical profiles, archaeal communities, and bacterial communities were independently correlated with soil depth and water cover. Centimeters of soil depth and corresponding geochemical shifts consistently affected microbial community structure more than hundreds of meters of lateral distance. Methanogens with diverse metabolisms were detected across the wetland, but displayed surprising OTU-level partitioning by depth. Candidatus Methanoperedens spp. archaea thought to perform anaerobic oxidation of methane linked to iron reduction were abundant. Domain-specific sequencing also revealed unexpectedly diverse non-methane-cycling archaeal members. OTUs within the underexplored Woesearchaeota and Bathyarchaeota were prevalent across the wetland, with subgroups and individual OTUs exhibiting distinct occupancy and abundance distributions aligned with environmental gradients. This study adds to our understanding of ecological range for key archaeal taxa in a model freshwater wetland, and links these taxa and individual OTUs to hypotheses about processes governing biogeochemical cycling.


Asunto(s)
Archaea/clasificación , Archaea/genética , Bacterias/clasificación , ADN de Archaea/genética , Metano/metabolismo , Consorcios Microbianos/genética , Bacterias/genética , Biodiversidad , ADN Bacteriano/genética , Agua Dulce/microbiología , Secuenciación de Nucleótidos de Alto Rendimiento , Hierro/metabolismo , Oxidación-Reducción , ARN Ribosómico 16S/genética , Suelo , Microbiología del Suelo , Humedales
10.
Front Microbiol ; 7: 238, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26973616

RESUMEN

The ecosystem roles of fungi have been extensively studied by targeting one organism and/or biological process at a time, but the full metabolic potential of fungi has rarely been captured in an environmental context. We hypothesized that fungal genome sequences could be assembled directly from the environment using metagenomics and that transcriptomics and proteomics could simultaneously reveal metabolic differentiation across habitats. We reconstructed the near-complete 27 Mbp genome of a filamentous fungus, Acidomyces richmondensis, and evaluated transcript and protein expression in floating and streamer biofilms from an acid mine drainage (AMD) system. A. richmondensis transcripts involved in denitrification and in the degradation of complex carbon sources (including cellulose) were up-regulated in floating biofilms, whereas central carbon metabolism and stress-related transcripts were significantly up-regulated in streamer biofilms. These findings suggest that the biofilm niches are distinguished by distinct carbon and nitrogen resource utilization, oxygen availability, and environmental challenges. An isolated A. richmondensis strain from this environment was used to validate the metagenomics-derived genome and confirm nitrous oxide production at pH 1. Overall, our analyses defined mechanisms of fungal adaptation and identified a functional shift related to different roles in carbon and nitrogen turnover for the same species of fungi growing in closely located but distinct biofilm niches.

11.
ISME J ; 9(12): 2697-711, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25918833

RESUMEN

Marine microbial communities experience daily fluctuations in light and temperature that can have important ramifications for carbon and nutrient cycling. Elucidation of such short time scale community-wide dynamics is hindered by system complexity. Hypersaline aquatic environments have lower species richness than marine environments and can be well-defined spatially, hence they provide a model system for diel cycle analysis. We conducted a 3-day time series experiment in a well-defined pool in hypersaline Lake Tyrrell, Australia. Microbial communities were tracked by combining cultivation-independent lipidomic, metagenomic and microscopy methods. The ratio of total bacterial to archaeal core lipids in the planktonic community increased by up to 58% during daylight hours and decreased by up to 32% overnight. However, total organism abundances remained relatively consistent over 3 days. Metagenomic analysis of the planktonic community composition, resolved at the genome level, showed dominance by Haloquadratum species and six uncultured members of the Halobacteriaceae. The post 0.8 µm filtrate contained six different nanohaloarchaeal types, three of which have not been identified previously, and cryo-transmission electron microscopy imaging confirmed the presence of small cells. Notably, these nano-sized archaea showed a strong diel cycle, with a pronounced increase in relative abundance over the night periods. We detected no eukaryotic algae or other photosynthetic primary producers, suggesting that carbon resources may derive from patchily distributed microbial mats at the sediment-water interface or from surrounding land. Results show the operation of a strong community-level diel cycle, probably driven by interconnected temperature, light abundance, dissolved oxygen concentration and nutrient flux effects.


Asunto(s)
Archaea/genética , Bacterias/genética , Lagos/microbiología , Lípidos/química , Metagenómica , Archaea/química , Archaea/clasificación , Archaea/metabolismo , Australia , Bacterias/química , Bacterias/clasificación , Bacterias/metabolismo , Ecosistema , Lagos/análisis , Metabolismo de los Lípidos , Salinidad , Cloruro de Sodio/análisis , Cloruro de Sodio/metabolismo
12.
Microbiome ; 3: 6, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25815185

RESUMEN

BACKGROUND: Triclosan is a widely used antimicrobial compound and emerging environmental contaminant. Although the role of the gut microbiome in health and disease is increasingly well established, the interaction between environmental contaminants and host microbiome is largely unexplored, with unknown consequences for host health. This study examined the effects of low, environmentally relevant levels of triclosan exposure on the fish gut microbiome. Developing fathead minnows (Pimephales promelas) were exposed to two low levels of triclosan over a 7-day exposure. Fish gastrointestinal tracts from exposed and control fish were harvested at four time points: immediately preceding and following the 7-day exposure and after 1 and 2 weeks of depuration. RESULTS: A total of 103 fish gut bacterial communities were characterized by high-throughput sequencing and analysis of the V3-V4 region of the 16S rRNA gene. By measures of both alpha and beta diversity, gut microbial communities were significantly differentiated by exposure history immediately following triclosan exposure. After 2 weeks of depuration, these differences disappear. Independent of exposure history, communities were also significantly structured by time. This first detailed census of the fathead minnow gut microbiome shows a bacterial community that is similar in composition to those of zebrafish and other freshwater fish. Among the triclosan-resilient members of this host-associated community are taxa associated with denitrification in wastewater treatment, taxa potentially able to degrade triclosan, and taxa from an unstudied host-associated candidate division. CONCLUSIONS: The fathead minnow gut microbiome is rapidly and significantly altered by exposure to low, environmentally relevant levels of triclosan, yet largely recovers from this short-term perturbation over an equivalently brief time span. These results suggest that even low-level environmental exposure to a common antimicrobial compound can induce significant short-term changes to the gut microbiome, followed by restoration, demonstrating both the sensitivity and resilience of the gut flora to challenges by environmental toxicants. This short-term disruption in a developing organism may have important long-term consequences for host health. The identification of multiple taxa not often reported in the fish gut suggests that microbial nitrogen metabolism in the fish gut may be more complex than previously appreciated.

13.
Environ Microbiol ; 17(3): 622-36, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24674078

RESUMEN

Microbial community structure, and niche and neutral processes can all influence response to disturbance. Here, we provide experimental evidence for niche versus neutral and founding community effects during a bioremediation-related organic carbon disturbance. Subsurface sediment, partitioned into 22 flow-through columns, was stimulated in situ by the addition of acetate as a carbon and electron donor source. This drove the system into a new transient biogeochemical state characterized by iron reduction and enriched Desulfuromonadales, Comamonadaceae and Bacteroidetes lineages. After approximately 1 month conditions favoured sulfate reduction, and were accompanied by a substantial increase in the relative abundance of Desulfobulbus, Desulfosporosinus, Desulfitobacterium and Desulfotomaculum. Two subsets of four to five columns each were switched from acetate to lactate amendment during either iron (earlier) or sulfate (later) reduction. Hence, subsets had significantly different founding communities. All lactate treatments exhibited lower relative abundances of Desulfotomaculum and Bacteroidetes, enrichments of Clostridiales and Psychrosinus species, and a temporal succession from highly abundant Clostridium sensu stricto to Psychrosinus. Regardless of starting point, lactate-switch communities followed comparable structural trajectories, whereby convergence was evident 9 to 16 days after each switch, and significant after 29 to 34 days of lactate addition. Results imply that neither the founding community nor neutral processes influenced succession following perturbation.


Asunto(s)
Ácido Acético/metabolismo , Carbono/metabolismo , Sedimentos Geológicos/microbiología , Hierro/metabolismo , Consorcios Microbianos , Sulfatos/metabolismo , Bacteroidetes/genética , Bacteroidetes/metabolismo , Biodegradación Ambiental , Biodiversidad , Clostridium/genética , Clostridium/metabolismo , Comamonadaceae/clasificación , Comamonadaceae/genética , Comamonadaceae/metabolismo , Deltaproteobacteria/genética , Desulfotomaculum/genética , Desulfotomaculum/metabolismo , Ecosistema , Oxidación-Reducción , Filogenia
14.
Microbiome ; 2(1): 1, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24468033

RESUMEN

BACKGROUND: The source inoculum of gastrointestinal tract (GIT) microbes is largely influenced by delivery mode in full-term infants, but these influences may be decoupled in very low birth weight (VLBW, <1,500 g) neonates via conventional broad-spectrum antibiotic treatment. We hypothesize the built environment (BE), specifically room surfaces frequently touched by humans, is a predominant source of colonizing microbes in the gut of premature VLBW infants. Here, we present the first matched fecal-BE time series analysis of two preterm VLBW neonates housed in a neonatal intensive care unit (NICU) over the first month of life. RESULTS: Fresh fecal samples were collected every 3 days and metagenomes sequenced on an Illumina HiSeq2000 device. For each fecal sample, approximately 33 swabs were collected from each NICU room from 6 specified areas: sink, feeding and intubation tubing, hands of healthcare providers and parents, general surfaces, and nurse station electronics (keyboard, mouse, and cell phone). Swabs were processed using a recently developed 'expectation maximization iterative reconstruction of genes from the environment' (EMIRGE) amplicon pipeline in which full-length 16S rRNA amplicons were sheared and sequenced using an Illumina platform, and short reads reassembled into full-length genes. Over 24,000 full-length 16S rRNA sequences were produced, generating an average of approximately 12,000 operational taxonomic units (OTUs) (clustered at 97% nucleotide identity) per room-infant pair. Dominant gut taxa, including Staphylococcus epidermidis, Klebsiella pneumoniae, Bacteroides fragilis, and Escherichia coli, were widely distributed throughout the room environment with many gut colonizers detected in more than half of samples. Reconstructed genomes from infant gut colonizers revealed a suite of genes that confer resistance to antibiotics (for example, tetracycline, fluoroquinolone, and aminoglycoside) and sterilizing agents, which likely offer a competitive advantage in the NICU environment. CONCLUSIONS: We have developed a high-throughput culture-independent approach that integrates room surveys based on full-length 16S rRNA gene sequences with metagenomic analysis of fecal samples collected from infants in the room. The approach enabled identification of discrete ICU reservoirs of microbes that also colonized the infant gut and provided evidence for the presence of certain organisms in the room prior to their detection in the gut.

15.
Methods Enzymol ; 531: 333-52, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24060129

RESUMEN

Microbial ecologists have reaped enormous benefit from advances in high-throughput DNA sequencing. However, the short read lengths of currently dominant technologies have made a seemingly simple question about shotgun metagenomic experiments difficult to answer: what small subunit ribosomal RNA (SSU rRNA) genes are present in a sequenced biological sample? Without these gene sequences, it is difficult to interpret a sample within the rich context of ribosomal rRNA databases accumulated over decades. This chapter presents specialized software, EMIRGE, for the assembly of SSU rRNA genes. EMIRGE is optimized to deal with strain similarity and the fluctuating levels of conservation within the SSU rRNA gene that make assembly difficult. It has been used to successfully assemble genes from shotgun metagenomes, long PCR amplicons, and total-RNA transcriptomes. A detailed discussion of how EMIRGE works and how it deals with the uncertainty inherent in the assembly problem is presented. Practical suggestions are given for understanding and optimizing parameter choice, data preprocessing and postprocessing, and creation of a candidate SSU rRNA gene database. When high-throughput sequencing data are available, EMIRGE can serve as a valuable tool for interpreting microbial community structure.


Asunto(s)
Genes de ARNr , Metagenómica , Programas Informáticos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Filogenia , Análisis de Secuencia de ADN
16.
PLoS One ; 8(2): e56018, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23405248

RESUMEN

In microbial ecology, a fundamental question relates to how community diversity and composition change in response to perturbation. Most studies have had limited ability to deeply sample community structure (e.g. Sanger-sequenced 16S rRNA libraries), or have had limited taxonomic resolution (e.g. studies based on 16S rRNA hypervariable region sequencing). Here, we combine the higher taxonomic resolution of near-full-length 16S rRNA gene amplicons with the economics and sensitivity of short-read sequencing to assay the abundance and identity of organisms that represent as little as 0.01% of sediment bacterial communities. We used a new version of EMIRGE optimized for large data size to reconstruct near-full-length 16S rRNA genes from amplicons sheared and sequenced with Illumina technology. The approach allowed us to differentiate the community composition among samples acquired before perturbation, after acetate amendment shifted the predominant metabolism to iron reduction, and once sulfate reduction began. Results were highly reproducible across technical replicates, and identified specific taxa that responded to the perturbation. All samples contain very high alpha diversity and abundant organisms from phyla without cultivated representatives. Surprisingly, at the time points measured, there was no strong loss of evenness, despite the selective pressure of acetate amendment and change in the terminal electron accepting process. However, community membership was altered significantly. The method allows for sensitive, accurate profiling of the "long tail" of low abundance organisms that exist in many microbial communities, and can resolve population dynamics in response to environmental change.


Asunto(s)
Bacterias/clasificación , Biodiversidad , ADN Bacteriano/genética , Variación Genética , Sedimentos Geológicos/microbiología , Agua Subterránea/microbiología , ARN Ribosómico 16S/genética , Bacterias/genética , Filogenia , Análisis de Secuencia de ADN
17.
ISME J ; 7(4): 800-16, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23190730

RESUMEN

Stimulation of subsurface microorganisms to induce reductive immobilization of metals is a promising approach for bioremediation, yet the overall microbial community response is typically poorly understood. Here we used proteogenomics to test the hypothesis that excess input of acetate activates complex community functioning and syntrophic interactions among autotrophs and heterotrophs. A flow-through sediment column was incubated in a groundwater well of an acetate-amended aquifer and recovered during microbial sulfate reduction. De novo reconstruction of community sequences yielded near-complete genomes of Desulfobacter (Deltaproteobacteria), Sulfurovum- and Sulfurimonas-like Epsilonproteobacteria and Bacteroidetes. Partial genomes were obtained for Clostridiales (Firmicutes) and Desulfuromonadales-like Deltaproteobacteria. The majority of proteins identified by mass spectrometry corresponded to Desulfobacter-like species, and demonstrate the role of this organism in sulfate reduction (Dsr and APS), nitrogen fixation and acetate oxidation to CO2 during amendment. Results indicate less abundant Desulfuromonadales, and possibly Bacteroidetes, also actively contributed to CO2 production via the tricarboxylic acid (TCA) cycle. Proteomic data indicate that sulfide was partially re-oxidized by Epsilonproteobacteria through nitrate-dependent sulfide oxidation (using Nap, Nir, Nos, SQR and Sox), with CO2 fixed using the reverse TCA cycle. We infer that high acetate concentrations, aimed at stimulating anaerobic heterotrophy, led to the co-enrichment of, and carbon fixation in Epsilonproteobacteria. Results give an insight into ecosystem behavior following addition of simple organic carbon to the subsurface, and demonstrate a range of biological processes and community interactions were stimulated.


Asunto(s)
Deltaproteobacteria/metabolismo , Epsilonproteobacteria/metabolismo , Agua Dulce/microbiología , Sedimentos Geológicos/microbiología , Agua Subterránea/microbiología , Proteómica , Bacteroidetes/clasificación , Bacteroidetes/aislamiento & purificación , Bacteroidetes/metabolismo , Biodegradación Ambiental , Carbono , Deltaproteobacteria/clasificación , Deltaproteobacteria/aislamiento & purificación , Ecosistema , Epsilonproteobacteria/clasificación , Epsilonproteobacteria/aislamiento & purificación , Ciclo del Nitrógeno , Oxidación-Reducción , Azufre
18.
Science ; 337(6102): 1661-5, 2012 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-23019650

RESUMEN

BD1-5, OP11, and OD1 bacteria have been widely detected in anaerobic environments, but their metabolisms remain unclear owing to lack of cultivated representatives and minimal genomic sampling. We uncovered metabolic characteristics for members of these phyla, and a new lineage, PER, via cultivation-independent recovery of 49 partial to near-complete genomes from an acetate-amended aquifer. All organisms were nonrespiring anaerobes predicted to ferment. Three augment fermentation with archaeal-like hybrid type II/III ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO) that couples adenosine monophosphate salvage with CO(2) fixation, a pathway not previously described in Bacteria. Members of OD1 reduce sulfur and may pump protons using archaeal-type hydrogenases. For six organisms, the UGA stop codon is translated as tryptophan. All bacteria studied here may play previously unrecognized roles in hydrogen production, sulfur cycling, and fermentation of refractory sedimentary carbon.


Asunto(s)
Bacterias Anaerobias/clasificación , Bacterias Anaerobias/enzimología , Hidrógeno/metabolismo , Hidrogenasas/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Azufre/metabolismo , Secuencia de Aminoácidos , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Bacterias Anaerobias/genética , Codón de Terminación/genética , ADN Bacteriano , Fermentación , Genoma Bacteriano , Hidrogenasas/química , Hidrogenasas/genética , Datos de Secuencia Molecular , Oxidación-Reducción , Filogenia , Ribulosa-Bifosfato Carboxilasa/química , Ribulosa-Bifosfato Carboxilasa/genética , Triptófano/genética
19.
Appl Environ Microbiol ; 78(23): 8321-30, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23001646

RESUMEN

Archaea are widely distributed and yet are most often not the most abundant members of microbial communities. Here, we document a transition from Bacteria- to Archaea-dominated communities in microbial biofilms sampled from the Richmond Mine acid mine drainage (AMD) system (∼pH 1.0, ∼38°C) and in laboratory-cultivated biofilms. This transition occurs when chemoautotrophic microbial communities that develop at the air-solution interface sink to the sediment-solution interface and degrade under microaerobic and anaerobic conditions. The archaea identified in these sunken biofilms are from the class Thermoplasmata, and in some cases, the highly divergent ARMAN nanoarchaeal lineage. In several of the sunken biofilms, nanoarchaea comprise 10 to 25% of the community, based on fluorescent in situ hybridization and metagenomic analyses. Comparative community proteomic analyses show a persistence of bacterial proteins in sunken biofilms, but there is clear evidence for amino acid modifications due to acid hydrolysis. Given the low representation of bacterial cells in sunken biofilms based on microscopy, we infer that hydrolysis reflects proteins derived from lysed cells. For archaea, we detected ∼2,400 distinct proteins, including a subset involved in proteolysis and peptide uptake. Laboratory cultivation experiments using complex carbon substrates demonstrated anaerobic enrichment of Ferroplasma and Aplasma coupled to the reduction of ferric iron. These findings indicate dominance of acidophilic archaea in degrading biofilms and suggest that they play roles in anaerobic nutrient cycling at low pH.


Asunto(s)
Archaea/metabolismo , Archaea/fisiología , Bacterias/metabolismo , Fenómenos Fisiológicos Bacterianos , Biopelículas/crecimiento & desarrollo , Biota , Carbono/metabolismo , Aerobiosis , Anaerobiosis , Archaea/clasificación , Archaea/genética , Bacterias/clasificación , Bacterias/genética , Microbiología Ambiental , Genes de ARNr , Procesos Heterotróficos , Concentración de Iones de Hidrógeno , Metagenoma , ARN de Archaea/genética , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
20.
Nucleic Acids Res ; 39(22): 9695-704, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21880595

RESUMEN

tRNA splicing endonucleases, essential enzymes found in Archaea and Eukaryotes, are involved in the processing of pre-tRNA molecules. In Archaea, three types of splicing endonuclease [homotetrameric: α(4), homodimeric: α(2), and heterotetrameric: (αß)(2)] have been identified, each representing different substrate specificity during the tRNA intron cleavage. Here, we discovered a fourth type of archaeal tRNA splicing endonuclease (ε(2)) in the genome of the acidophilic archaeon Candidatus Micrarchaeum acidiphilum, referred to as ARMAN-2 and its closely related species, ARMAN-1. The enzyme consists of two duplicated catalytic units and one structural unit encoded on a single gene, representing a novel three-unit architecture. Homodimeric formation was confirmed by cross-linking assay, and site-directed mutagenesis determined that the conserved L10-pocket interaction between catalytic and structural unit is necessary for the assembly. A tRNA splicing assay reveal that ε(2) endonuclease cleaves both canonical and non-canonical bulge-helix-bulge motifs, similar to that of (αß)(2) endonuclease. Unlike other ARMAN and Euryarchaeota, tRNAs found in ARMAN-2 are highly disrupted by introns at various positions, which again resemble the properties of archaeal species with (αß)(2) endonuclease. Thus, the discovery of ε(2) endonuclease in an archaeon deeply branched within Euryarchaeota represents a new example of the coevolution of tRNA and their processing enzymes.


Asunto(s)
Endorribonucleasas/química , Endorribonucleasas/metabolismo , Euryarchaeota/enzimología , ARN de Transferencia/metabolismo , Secuencia de Aminoácidos , Secuencia de Bases , Dimerización , Endorribonucleasas/clasificación , Euryarchaeota/genética , Evolución Molecular , Datos de Secuencia Molecular , Motivos de Nucleótidos , Filogenia , Subunidades de Proteína/metabolismo , Empalme del ARN , ARN de Transferencia/química , ARN de Transferencia/genética , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...