Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Netw Physiol ; 4: 1426743, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39175607

RESUMEN

The network nature of focal epilepsy is exemplified by mesial temporal lobe epilepsy (mTLE), characterized by focal seizures originating from the mesial temporal neocortex, amygdala, and hippocampus. The mTLE network hypothesis is evident in seizure semiology and interictal comorbidities, both reflecting limbic network dysfunction. The network generating seizures also supports essential physiological functions, including memory, emotion, mood, and sleep. Pathology in the mTLE network often manifests as interictal behavioral disturbances and seizures. The limbic circuit is a vital network, and here we review one of the most common focal epilepsies and its comorbidities. We describe two people with drug resistant mTLE implanted with an investigational device enabling continuous hippocampal local field potential sensing and anterior nucleus of thalamus deep brain stimulation (ANT-DBS) who experienced reversible psychosis during continuous high-frequency stimulation. The mechanism(s) of psychosis remain poorly understood and here we speculate that the anti-epileptic effect of high frequency ANT-DBS may provide insights into the physiology of primary disorders associated with psychosis.

3.
bioRxiv ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38915599

RESUMEN

Introduction: Stereoelectroencephalography (sEEG) is a mesoscale intracranial monitoring method which records from the brain volumetrically with depth electrodes. Implementation of sEEG in BCI has not been well-described across a diverse patient cohort. Methods: Across eighteen subjects, channels with high frequency broadband (HFB, 65-115Hz) power increases during hand, tongue, or foot movements during a motor screening task were provided real-time feedback based on these HFB power changes to control a cursor on a screen. Results: Seventeen subjects established successful control of the overt motor BCI, but only nine were able to control imagery BCI with ≥ 80% accuracy. In successful imagery BCI, HFB power in the two target conditions separated into distinct subpopulations, which appear to engage unique subnetworks of the motor cortex compared to cued movement or imagery alone. Conclusion: sEEG-based motor BCI utilizing overt movement and kinesthetic imagery is robust across patient ages and cortical regions with substantial differences in learning proficiency between real or imagined movement.

4.
Nat Commun ; 15(1): 3941, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38729937

RESUMEN

A relevant question concerning inter-areal communication in the cortex is whether these interactions are synergistic. Synergy refers to the complementary effect of multiple brain signals conveying more information than the sum of each isolated signal. Redundancy, on the other hand, refers to the common information shared between brain signals. Here, we dissociated cortical interactions encoding complementary information (synergy) from those sharing common information (redundancy) during prediction error (PE) processing. We analyzed auditory and frontal electrocorticography (ECoG) signals in five common awake marmosets performing two distinct auditory oddball tasks and investigated to what extent event-related potentials (ERP) and broadband (BB) dynamics encoded synergistic and redundant information about PE processing. The information conveyed by ERPs and BB signals was synergistic even at lower stages of the hierarchy in the auditory cortex and between auditory and frontal regions. Using a brain-constrained neural network, we simulated the synergy and redundancy observed in the experimental results and demonstrated that the emergence of synergy between auditory and frontal regions requires the presence of strong, long-distance, feedback, and feedforward connections. These results indicate that distributed representations of PE signals across the cortical hierarchy can be highly synergistic.


Asunto(s)
Estimulación Acústica , Corteza Auditiva , Callithrix , Electrocorticografía , Animales , Corteza Auditiva/fisiología , Callithrix/fisiología , Masculino , Femenino , Potenciales Evocados/fisiología , Lóbulo Frontal/fisiología , Potenciales Evocados Auditivos/fisiología , Percepción Auditiva/fisiología , Mapeo Encefálico/métodos
5.
J Neurosci Methods ; 407: 110153, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38710234

RESUMEN

Human brain connectivity can be mapped by single pulse electrical stimulation during intracranial EEG measurements. The raw cortico-cortical evoked potentials (CCEP) are often contaminated by noise. Common average referencing (CAR) removes common noise and preserves response shapes but can introduce bias from responsive channels. We address this issue with an adjusted, adaptive CAR algorithm termed "CAR by Least Anticorrelation (CARLA)". CARLA was tested on simulated CCEP data and real CCEP data collected from four human participants. In CARLA, the channels are ordered by increasing mean cross-trial covariance, and iteratively added to the common average until anticorrelation between any single channel and all re-referenced channels reaches a minimum, as a measure of shared noise. We simulated CCEP data with true responses in 0-45 of 50 total channels. We quantified CARLA's error and found that it erroneously included 0 (median) truly responsive channels in the common average with ≤42 responsive channels, and erroneously excluded ≤2.5 (median) unresponsive channels at all responsiveness levels. On real CCEP data, signal quality was quantified with the mean R2 between all pairs of channels, which represents inter-channel dependency and is low for well-referenced data. CARLA re-referencing produced significantly lower mean R2 than standard CAR, CAR using a fixed bottom quartile of channels by covariance, and no re-referencing. CARLA minimizes bias in re-referenced CCEP data by adaptively selecting the optimal subset of non-responsive channels. It showed high specificity and sensitivity on simulated CCEP data and lowered inter-channel dependency compared to CAR on real CCEP data.


Asunto(s)
Algoritmos , Corteza Cerebral , Potenciales Evocados , Procesamiento de Señales Asistido por Computador , Humanos , Potenciales Evocados/fisiología , Corteza Cerebral/fisiología , Masculino , Electrocorticografía/métodos , Electroencefalografía/métodos , Adulto , Estimulación Eléctrica , Simulación por Computador , Femenino
6.
medRxiv ; 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38496621

RESUMEN

Deep brain stimulation (DBS) is a viable treatment for a variety of neurological conditions, however, the mechanisms through which DBS modulates large-scale brain networks are unresolved. Clinical effects of DBS are observed over multiple timescales. In some conditions, such as Parkinson's disease and essential tremor, clinical improvement is observed within seconds. In many other conditions, such as epilepsy, central pain, dystonia, neuropsychiatric conditions or Tourette syndrome, the DBS related effects are believed to require neuroplasticity or reorganization and often take hours to months to observe. To optimize DBS parameters, it is therefore essential to develop electrophysiological biomarkers that characterize whether DBS settings are successfully engaging and modulating the network involved in the disease of interest. In this study, 10 individuals with drug resistant epilepsy undergoing intracranial stereotactic EEG including a thalamus electrode underwent a trial of repetitive thalamic stimulation. We evaluated thalamocortical effective connectivity using single pulse electrical stimulation, both at baseline and following a 145 Hz stimulation treatment trial. We found that when high frequency stimulation was delivered for >1.5 hours, the evoked potentials measured from remote regions were significantly reduced in amplitude and the degree of modulation was proportional to the strength of baseline connectivity. When stimulation was delivered for shorter time periods, results were more variable. These findings suggest that changes in effective connectivity in the network targeted with DBS accumulate over hours of DBS. Stimulation evoked potentials provide an electrophysiological biomarker that allows for efficient data-driven characterization of neuromodulation effects, which could enable new objective approaches for individualized DBS optimization.

7.
bioRxiv ; 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38496670

RESUMEN

Introduction: Stereoelectroencephalography (sEEG) has become the predominant method for intracranial seizure localization. When imaging, semiology, and scalp EEG are not in full agreement or definitively localizing, implanted sEEG recordings are used to test candidate seizure onset zones (SOZs). Discovered SOZs may then be targeted for resection, laser ablation, or neurostimulation. If a SOZ is eloquent, resection and ablation are both contraindicated, so identifying functional representation is crucial for therapeutic decision making. Objective: We present a novel functional brain mapping technique that utilizes task-based electrophysiological changes in sEEG during behavioral tasks and test this in pediatric and adult patients. Methods: sEEG was recorded in twenty patients with epilepsy, aged 6-39 (12 female, 18 of 20 patients < 21 years old), who underwent implanted monitoring to identify seizure onset. Each performed 1) visually cued simple repetitive movements of the hand, foot, or tongue while electromyography was recorded, and 2) simple picture naming or verb generation speech tasks while audio was recorded. Broadband changes in the power spectrum of the sEEG were compared between behavior and rest. Results: Electrophysiological functional mapping of movement and/or speech areas was completed in all 20 patients. Eloquent representation was identified in both cortex and white matter, and generally corresponded to classically described functional anatomic organization as well as other clinical mapping results. Robust maps of brain activity were identified in healthy brain, regions of developmental or acquired structural abnormality, and SOZs. Conclusion: Task based electrophysiological mapping using broadband changes in the sEEG signal reliably identifies movement and speech representation in pediatric and adult epilepsy patients.

8.
Sci Rep ; 14(1): 6527, 2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38499709

RESUMEN

Brain mapping is vital in understanding the brain's functional organization. Electroencephalography (EEG) is one of the most widely used brain mapping approaches, primarily because it is non-invasive, inexpensive, straightforward, and effective. Increasing the electrode density in EEG systems provides more neural information and can thereby enable more detailed and nuanced mapping procedures. Here, we show that the central sulcus can be clearly delineated using a novel ultra-high-density EEG system (uHD EEG) and somatosensory evoked potentials (SSEPs). This uHD EEG records from 256 channels with an inter-electrode distance of 8.6 mm and an electrode diameter of 5.9 mm. Reconstructed head models were generated from T1-weighted MRI scans, and electrode positions were co-registered to these models to create topographical plots of brain activity. EEG data were first analyzed with peak detection methods and then classified using unsupervised spectral clustering. Our topography plots of the spatial distribution from the SSEPs clearly delineate a division between channels above the somatosensory and motor cortex, thereby localizing the central sulcus. Individual EEG channels could be correctly classified as anterior or posterior to the central sulcus with 95.2% accuracy, which is comparable to accuracies from invasive intracranial recordings. Our findings demonstrate that uHD EEG can resolve the electrophysiological signatures of functional representation in the brain at a level previously only seen from surgically implanted electrodes. This novel approach could benefit numerous applications, including research, neurosurgical mapping, clinical monitoring, detection of conscious function, brain-computer interfacing (BCI), rehabilitation, and mental health.


Asunto(s)
Mapeo Encefálico , Encéfalo , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Mapeo Encefálico/métodos , Cabeza , Electroencefalografía/métodos , Electrodos Implantados , Electrodos
9.
J Neural Eng ; 21(2)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38484397

RESUMEN

Objective.This study aims to characterize the time course of impedance, a crucial electrophysiological property of brain tissue, in the human thalamus (THL), amygdala-hippocampus, and posterior hippocampus over an extended period.Approach.Impedance was periodically sampled every 5-15 min over several months in five subjects with drug-resistant epilepsy using an investigational neuromodulation device. Initially, we employed descriptive piecewise and continuous mathematical models to characterize the impedance response for approximately three weeks post-electrode implantation. We then explored the temporal dynamics of impedance during periods when electrical stimulation was temporarily halted, observing a monotonic increase (rebound) in impedance before it stabilized at a higher value. Lastly, we assessed the stability of amplitude and phase over the 24 h impedance cycle throughout the multi-month recording.Main results.Immediately post-implantation, the impedance decreased, reaching a minimum value in all brain regions within approximately two days, and then increased monotonically over about 14 d to a stable value. The models accounted for the variance in short-term impedance changes. Notably, the minimum impedance of the THL in the most epileptogenic hemisphere was significantly lower than in other regions. During the gaps in electrical stimulation, the impedance rebound decreased over time and stabilized around 200 days post-implant, likely indicative of the foreign body response and fibrous tissue encapsulation around the electrodes. The amplitude and phase of the 24 h impedance oscillation remained stable throughout the multi-month recording, with circadian variation in impedance dominating the long-term measures.Significance.Our findings illustrate the complex temporal dynamics of impedance in implanted electrodes and the impact of electrical stimulation. We discuss these dynamics in the context of the known biological foreign body response of the brain to implanted electrodes. The data suggest that the temporal dynamics of impedance are dependent on the anatomical location and tissue epileptogenicity. These insights may offer additional guidance for the delivery of therapeutic stimulation at various time points post-implantation for neuromodulation therapy.


Asunto(s)
Estimulación Encefálica Profunda , Cuerpos Extraños , Humanos , Impedancia Eléctrica , Encéfalo/fisiología , Electrodos Implantados , Estimulación Encefálica Profunda/métodos
10.
J Neurosurg ; 141(2): 406-411, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38489816

RESUMEN

OBJECTIVE: Conventional frame-based stereotactic systems have circumferential base frames, often necessitating deep brain stimulation (DBS) surgery in two stages: intracranial electrode insertion followed by surgical re-preparation and pulse generator implantation. Some patients do not tolerate awake surgery, underscoring the need for a safe alternative for asleep DBS surgery. A frame-based stereotactic system with a skull-mounted "key" in lieu of a circumferential base frame received US FDA clearance. The authors describe the system's application for single-stage, asleep DBS surgery in 8 patients at their institution and review its workflow and technical considerations. METHODS: Eight patients underwent DBS lead insertion and IPG implantation in a single surgical preparation under general anesthesia using the system. Postoperative CT imaging confirmed lead placement. RESULTS: Eight patients underwent implantation of 15 total leads targeting the ventral intermediate nucleus (4 patients), globus pallidus internus (GPi; 3 patients), and subthalamic nucleus (STN; 1 patient). Intraoperative microelectrode recording was conducted for GPi and STN targets. Postoperative CT imaging revealed a mean ± SD radial error of 1.24 ± 0.45 mm (n = 15 leads), without surgical complications. CONCLUSIONS: The stereotactic system facilitated safe and effective asleep, single-stage DBS surgery, maintaining traditional lead accuracy standards.


Asunto(s)
Anestesia General , Estimulación Encefálica Profunda , Electrodos Implantados , Técnicas Estereotáxicas , Humanos , Estimulación Encefálica Profunda/métodos , Estimulación Encefálica Profunda/instrumentación , Masculino , Femenino , Persona de Mediana Edad , Anciano , Núcleo Subtalámico/cirugía , Enfermedad de Parkinson/terapia , Enfermedad de Parkinson/cirugía , Globo Pálido/cirugía , Globo Pálido/diagnóstico por imagen , Adulto , Tomografía Computarizada por Rayos X
11.
medRxiv ; 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38343858

RESUMEN

Objective: This study aims to characterize the time course of impedance, a crucial electrophysiological property of brain tissue, in the human thalamus (THL), amygdala-hippocampus (AMG-HPC), and posterior hippocampus (post-HPC) over an extended period. Approach: Impedance was periodically sampled every 5-15 minutes over several months in five subjects with drug-resistant epilepsy using an experimental neuromodulation device. Initially, we employed descriptive piecewise and continuous mathematical models to characterize the impedance response for approximately three weeks post-electrode implantation. We then explored the temporal dynamics of impedance during periods when electrical stimulation was temporarily halted, observing a monotonic increase (rebound) in impedance before it stabilized at a higher value. Lastly, we assessed the stability of amplitude and phase over the 24-hour impedance cycle throughout the multi-month recording. Main results: Immediately post-implantation, the impedance decreased, reaching a minimum value in all brain regions within approximately two days, and then increased monotonically over about 14 days to a stable value. The models accounted for the variance in short-term impedance changes. Notably, the minimum impedance of the THL in the most epileptogenic hemisphere was significantly lower than in other regions. During the gaps in electrical stimulation, the impedance rebound decreased over time and stabilized around 200 days post-implant, likely indicative of the foreign body response and fibrous tissue encapsulation around the electrodes. The amplitude and phase of the 24-hour impedance oscillation remained stable throughout the multi-month recording, with circadian variation in impedance dominating the long-term measures. Significance: Our findings illustrate the complex temporal dynamics of impedance in implanted electrodes and the impact of electrical stimulation. We discuss these dynamics in the context of the known biological foreign body response of the brain to implanted electrodes. The data suggest that the temporal dynamics of impedance are dependent on the anatomical location and tissue epileptogenicity. These insights may offer additional guidance for the delivery of therapeutic stimulation at various time points post-implantation for neuromodulation therapy.

12.
medRxiv ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38405801

RESUMEN

High frequency anterior nucleus of the thalamus deep brain stimulation (ANT DBS) is an established therapy for treatment resistant focal epilepsies. Although high frequency-ANT DBS is well tolerated, patients are rarely seizure free and the efficacy of other DBS parameters and their impact on comorbidities of epilepsy such as depression and memory dysfunction remain unclear. The purpose of this study was to assess the impact of low vs high frequency ANT DBS on verbal memory and self-reported anxiety and depression symptoms. Five patients with treatment resistant temporal lobe epilepsy were implanted with an investigational brain stimulation and sensing device capable of ANT DBS and ambulatory intracranial electroencephalographic (iEEG) monitoring, enabling long-term detection of electrographic seizures. While patients received therapeutic high frequency (100 and 145 Hz continuous and cycling) and low frequency (2 and 7 Hz continuous) stimulation, they completed weekly free recall verbal memory tasks and thrice weekly self-reports of anxiety and depression symptom severity. Mixed effects models were then used to evaluate associations between memory scores, anxiety and depression self-reports, seizure counts, and stimulation frequency. Memory score was significantly associated with stimulation frequency, with higher free recall verbal memory scores during low frequency ANT DBS. Self-reported anxiety and depression symptom severity was not significantly associated with stimulation frequency. These findings suggest the choice of ANT DBS stimulation parameter may impact patients' cognitive function, independently of its impact on seizure rates.

13.
medRxiv ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38370724

RESUMEN

Temporal lobe epilepsy is a common neurological disease characterized by recurrent seizures. These seizures often originate from limbic networks and people also experience chronic comorbidities related to memory, mood, and sleep (MMS). Deep brain stimulation targeting the anterior nucleus of the thalamus (ANT-DBS) is a proven therapy, but the optimal stimulation parameters remain unclear. We developed a neurotechnology platform for tracking seizures and MMS to enable data streaming between an investigational brain sensing-stimulation implant, mobile devices, and a cloud environment. Artificial Intelligence algorithms provided accurate catalogs of seizures, interictal epileptiform spikes, and wake-sleep brain states. Remotely administered memory and mood assessments were used to densely sample cognitive and behavioral response during ANT-DBS. We evaluated the efficacy of low-frequency versus high-frequency ANT-DBS. They both reduced seizures, but low-frequency ANT-DBS showed greater reductions and better sleep and memory. These results highlight the potential of synchronized brain sensing and behavioral tracking for optimizing neuromodulation therapy.

14.
bioRxiv ; 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38260687

RESUMEN

Human brain connectivity can be measured in different ways. Intracranial EEG (iEEG) measurements during single pulse electrical stimulation provide a unique way to assess the spread of electrical information with millisecond precision. To provide a robust workflow to process these cortico-cortical evoked potential (CCEP) data and detect early evoked responses in a fully automated and reproducible fashion, we developed Early Response (ER)-detect. ER-detect is an open-source Python package and Docker application to preprocess BIDS structured iEEG data and detect early evoked CCEP responses. ER-detect can use three response detection methods, which were validated against 14-manually annotated CCEP datasets from two different sites by four independent raters. Results showed that ER-detect's automated detection performed on par with the inter-rater reliability (Cohen's Kappa of ~0.6). Moreover, ER-detect was optimized for processing large CCEP datasets, to be used in conjunction with other connectomic investigations. ER-detect provides a highly efficient standardized workflow such that iEEG-BIDS data can be processed in a consistent manner and enhance the reproducibility of CCEP based connectivity results.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA