Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 19398, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37938619

RESUMEN

Staphylococcus aureus forms biofilms that cause considerable morbidity and mortality in patients who receive implanted devices such as prosthetics or fixator pins. An ideal surface for such medical devices would inhibit biofilm growth. Recently, it was reported that surface modification of stainless steel materials with carbon-infiltrated carbon nanotubes (CICNT) inhibits the growth of S. aureus biofilms. The purpose of this study was to investigate this antimicrobial effect on titanium materials with CICNT coated surfaces in a variety of surface morphologies and across a broader spectrum of S. aureus isolates. Study samples of CICNT-coated titanium, and control samples of bare titanium, a common implant material, were exposed to S. aureus. Viable bacteria were removed from adhered biofilms and quantified as colony forming units. Scanning electron microscopy was used to qualitatively analyze biofilms both before and after removal of cells. The CICNT surface was found to have significantly fewer adherent bacteria than bare titanium control surfaces, both via colony forming unit and microscopic analyses. This effect was most pronounced on CICNT surfaces with an average nanotube diameter of 150 nm, showing a 2.5-fold reduction in adherent bacteria. Since S. aureus forms different biofilm structures by isolate and by growth conditions, we tested 7 total isolates and found a significant reduction in the biofilm load in six out of seven S. aureus isolates tested. To examine whether the anti-biofilm effect was due to the structure of the nanotubes, we generated an unstructured carbon surface. Significantly more bacteria adhered to a nonstructured carbon surface than to the 150 nm CICNT surface, suggesting that the topography of the nanotube structure itself has anti-biofilm properties. The CICNT surface possesses anti-biofilm properties that result in fewer adherent S. aureus bacteria. These anti-biofilm properties are consistent across multiple isolates of S. aureus and are affected by nanotube diameter. The experiments performed in this study suggest that this effect is due to the nanostructure of the CICNT surface.


Asunto(s)
Nanotubos de Carbono , Humanos , Staphylococcus aureus , Titanio/farmacología , Biopelículas , Clavos Ortopédicos
2.
Br J Nutr ; 130(3): 411-416, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-36261434

RESUMEN

Excess unabsorbed iron in the gastrointestinal tract may select for enteric pathogens and increase the incidence and severity of infectious disease. Aspergillus oryzae (Ao) is a filamentous fungus that has the ability to accumulate and store large amounts of iron, and when used as a supplement or fortificant, has similar absorption to ferrous sulphate (FeSO4) in humans. The objective of this study was to determine the effect of iron-enriched Ao (Ao iron) compared with FeSO4 on iron accumulation, growth and motility of the Gram-negative enteric pathogen, S. Typhimurium. S. Typhimurium was cultured in media containing no added iron or 1 µM elemental iron as either Ao iron or FeSO4. S. Typhimurium cultured with FeSO4 accumulated more iron than those cultured with Ao iron. Genes regulated by the iron-activated transcriptional repressor, Fur, did not differ between control and Ao iron, but decreased in S. Typhimurium cultured with FeSO4 compared with both groups. Growth of S. Typhimurium was greater when cultured with FeSO4 compared with Ao iron and control. S. Typhimurium swam faster, had greater acceleration and travelled further when cultured with FeSO4 compared with Ao iron and control; swim speed, acceleration and distance travelled did not differ between Ao iron and control. These findings provide evidence that Ao iron reduces the virulence of a common enteric pathogen in vitro. Further research is required to determine whether iron-enriched Ao is a suitable iron supplement to improve iron delivery in areas with a high infection burden.


Asunto(s)
Aspergillus oryzae , Hierro , Humanos , Hierro/farmacología , Compuestos Ferrosos , Sulfatos
3.
J Nutr ; 152(10): 2198-2208, 2022 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-35906187

RESUMEN

BACKGROUND: Short-term starvation and severe food deprivation (FD) reduce dietary iron absorption and restricts iron to tissues, thereby limiting the amount of iron available for erythropoiesis. These effects may be mediated by increases in the iron regulatory hormone hepcidin; however, whether mild to moderate FD has similar effects on hepcidin and iron homeostasis is not known. OBJECTIVES: To determine the effects of varying magnitudes and durations of FD on hepcidin and indicators of iron status in male and female mice. METHODS: Male and female C57BL/6J mice (14 wk old; n = 170) were randomly assigned to consume AIN-93M diets ad libitum (AL) or varying magnitudes of FD (10%, 20%, 40%, 60%, 80%, or 100%). FD was based on the average amount of food consumed by the AL males or females, and food was split into morning and evening meals. Mice were euthanized at 48 h and 1, 2, and 3 wk, and hepcidin and indicators of iron status were measured. Data were analyzed by Pearson correlation and one-way ANOVA. RESULTS: Liver hepcidin mRNA was positively correlated with the magnitude of FD at all time points (P < 0.05). At 3 wk, liver hepcidin mRNA increased 3-fold with 10% and 20% FD compared with AL and was positively associated with serum hepcidin (R = 0.627, P < 0.0001). Serum iron was reduced by ∼65% (P ≤ 0.01), and liver nonheme iron concentrations were ∼75% greater (P ≤ 0.01) with 10% and 20% FD for 3 wk compared with AL. Liver hepcidin mRNA at 3 wk was positively correlated with liver Bmp6 (R = 0.765, P < 0.0001) and liver gluconeogenic enzymes (R = >0.667, P < 0.05) but not markers of inflammation (P > 0.05). CONCLUSIONS: FD increases hepcidin in male and female mice and results in hypoferremia and tissue iron sequestration. These findings suggest that increased hepcidin with FD may contribute to the disturbances in iron homeostasis with undernutrition.


Asunto(s)
Hepcidinas , Inanición , Animales , Femenino , Privación de Alimentos , Hepcidinas/genética , Hormonas , Hierro , Hierro de la Dieta , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Mensajero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...