Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 282
Filtrar
1.
SLAS Discov ; 29(6): 100176, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39122117

RESUMEN

Agonists of the secretin receptor have potential applications for diseases of the cardiovascular, gastrointestinal, and metabolic systems, yet no clinically-active non-peptidyl agonists of this receptor have yet been developed. In the current work, we have identified a new small molecule lead compound with this pharmacological profile. We have prepared and characterized a systematic structure-activity series around this thiadiazole scaffold to better understand the molecular determinants of its activity. We were able to enhance the in vitro activity and to maintain the specificity of the parent compound. We found the most active candidate to be quite stable in plasma, although it was metabolized by hepatic microsomes. This chemical probe should be useful for in vitro studies and needs to be tested for in vivo pharmacological activity. This could be an important lead toward the development of a first-in-class orally active agonist of the secretin receptor, which could be useful for multiple disease states.


Asunto(s)
Receptores Acoplados a Proteínas G , Receptores de la Hormona Gastrointestinal , Tiadiazoles , Humanos , Relación Estructura-Actividad , Tiadiazoles/farmacología , Tiadiazoles/química , Receptores de la Hormona Gastrointestinal/agonistas , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo , Animales , Células CHO , Cricetulus , Microsomas Hepáticos/metabolismo , Microsomas Hepáticos/efectos de los fármacos
2.
PLoS Biol ; 22(7): e3002673, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39083706

RESUMEN

Development of optimal therapeutics for disease states that can be associated with increased membrane cholesterol requires better molecular understanding of lipid modulation of the drug target. Type 1 cholecystokinin receptor (CCK1R) agonist actions are affected by increased membrane cholesterol, enhancing ligand binding and reducing calcium signaling, while agonist actions of the closely related CCK2R are not. In this work, we identified a set of chimeric human CCK1R/CCK2R mutations that exchange the cholesterol sensitivity of these 2 receptors, providing powerful tools when expressed in CHO and HEK-293 model cell lines to explore mechanisms. Static, low energy, high-resolution structures of the mutant CCK1R constructs, stabilized in complex with G protein, were not substantially different, suggesting that alterations to receptor dynamics were key to altered function. We reveal that cholesterol-dependent dynamic changes in the conformation of the helical bundle of CCK receptors affects both ligand binding at the extracellular surface and G protein coupling at the cytosolic surface, as well as their interrelationships involved in stimulus-response coupling. This provides an ideal setting for potential allosteric modulators to correct the negative impact of membrane cholesterol on CCK1R.


Asunto(s)
Colesterol , Proteínas de Unión al GTP , Unión Proteica , Receptor de Colecistoquinina A , Receptor de Colecistoquinina B , Animales , Humanos , Células CHO , Colesterol/metabolismo , Cricetulus , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP/genética , Células HEK293 , Ligandos , Mutación , Conformación Proteica , Receptor de Colecistoquinina A/metabolismo , Receptor de Colecistoquinina A/genética , Receptor de Colecistoquinina B/metabolismo , Receptor de Colecistoquinina B/genética
3.
Res Sq ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39070646

RESUMEN

The functional significance of the interactions between proteins in living cells to form short-lived quaternary structures cannot be overemphasized. Yet, quaternary structure information is not captured by current methods, neither can those methods determine structure within living cells. The dynamic versatility, abundance, and functional diversity of G protein-coupled receptors (GPCRs) pose myriad challenges to existing technologies but also present these proteins as the ideal testbed for new technologies to investigate the complex inter-regulation of receptor-ligand, receptor-receptor, and receptor-downstream effector interfaces in living cells. Here, we present development and use of a novel method capable of overcoming existing challenges by combining distributions (or spectrograms) of FRET efficiencies from populations of fluorescently tagged proteins associating into oligomeric complexes in live cells with diffusion-like trajectories of FRET donors and acceptors obtained from molecular dynamics (MD) simulations. Our approach provides an atom-level picture of the binding interfaces within oligomers of the human secretin receptor (hSecR) in live cells and allows for extraction of mechanistic insights into the function of GPCRs oligomerization. This FRET-MD spectrometry approach is a robust platform for investigating protein-protein binding mechanisms and opens a new avenue for investigating stable as well as fleeting quaternary structures of any membrane proteins in living cells.

4.
Nat Commun ; 15(1): 4390, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782989

RESUMEN

Class B G protein-coupled receptors can form dimeric complexes important for high potency biological effects. Here, we apply pharmacological, biochemical, and biophysical techniques to cells and membranes expressing the prototypic secretin receptor (SecR) to gain insights into secretin binding to homo-dimeric and monomeric SecR. Spatial proximity between peptide and receptor residues, probed by disulfide bond formation, demonstrates that the secretin N-terminus moves from adjacent to extracellular loop 3 (ECL3) at wild type SecR toward ECL2 in non-dimerizing mutants. Analysis of fluorescent secretin analogs demonstrates stable engagement of the secretin C-terminal region within the receptor extracellular domain (ECD) for both dimeric and monomeric receptors, while the mid-region exhibits lower mobility while docked at the monomer. Moreover, decoupling of G protein interaction reduces mobility of the peptide mid-region at wild type receptor to levels similar to the mutant, whereas it has no further impact on the monomer. These data support a model of peptide engagement whereby the ability of SecR to dimerize promotes higher conformational dynamics of the peptide-bound receptor ECD and ECLs that likely facilitates more efficient G protein recruitment and activation, consistent with the higher observed functional potency of secretin at wild type SecR relative to the monomeric mutant receptor.


Asunto(s)
Unión Proteica , Multimerización de Proteína , Receptores Acoplados a Proteínas G , Receptores de la Hormona Gastrointestinal , Secretina , Receptores de la Hormona Gastrointestinal/metabolismo , Receptores de la Hormona Gastrointestinal/química , Receptores de la Hormona Gastrointestinal/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Secretina/metabolismo , Secretina/química , Secretina/genética , Ligandos , Animales , Humanos , Cricetulus , Células CHO , Mutación , Células HEK293
5.
Membranes (Basel) ; 13(2)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36837653

RESUMEN

As part of an ongoing effort to develop a drug targeting the type 1 cholecystokinin receptor (CCK1R) to help prevent and/or treat obesity, we recently performed a high throughput screening effort of small molecules seeking candidates that enhanced the action of the natural agonist, CCK, thus acting as positive allosteric modulators without exhibiting intrinsic agonist action. Such probes would be expected to act in a temporally finite way to enhance CCK action to induce satiety during and after a meal and potentially even modulate activity at the CCK1R in a high cholesterol environment present in some obese patients. The current work focuses on the best scaffold, representing tetracyclic molecules identified through high throughput screening we previously reported. Extensive characterization of the two top "hits" from the previous effort demonstrated them to fulfill the desired pharmacologic profile. We undertook analog-by-catalog expansion of this scaffold using 65 commercially available analogs. In this effort, we were able to eliminate an off-target effect observed for this scaffold while retaining its activity as a positive allosteric modulator of CCK1R in both normal and high cholesterol membrane environments. These insights should be useful in the rational medicinal chemical enhancement of this scaffold and in the future development of candidates to advance to pre-clinical proof-of-concept and to clinical trials.

6.
SLAS Discov ; 27(7): 384-394, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35850480

RESUMEN

Obesity has become a prevailing health burden globally and particularly in the US. It is associated with many health problems, including cardiovascular disease, diabetes and poorer mental health. Hence, there is a high demand to find safe and effective therapeutics for sustainable weight loss. Cholecystokinin (CCK) has been implicated as one of the first gastrointestinal hormones to reduce overeating and suppress appetite by activating the type 1 cholecystokinin receptor (CCK1R). Several drug development campaigns have focused on finding CCK1R-specific agonists, which showed promising efficacy for reducing meal size and weight, but fell short on FDA approval, likely due to side effects associated with potent, long-lasting activation of CCK1Rs. Positive allosteric modulators (PAMs) without inherent agonist activity have been proposed to overcome the shortcomings of traditional, orthosteric agonists and restore CCK1R signaling in failing physiologic systems. However, drug discovery campaigns searching for such novel acting CCK1R agents remain limited. Here we report a high-throughput screening effort and the establishment of a testing funnel, which led to the identification of novel CCK1R modulators. We utilized IP-One accumulation to develop robust functional equilibrium assays tailored to either detect PAMs, agonists or non-specific activators. In addition, we established the CCK1R multiplex PAM assay as a novel method to evaluate functional selectivity capable of recording CCK1R-induced cAMP accumulation and ß-arrestin recruitment in the same well. This selection and arrangement of methods enabled the discovery of three scaffolds, which we characterized and validated in an array of functional and binding assays. We found two hits incorporating a tetracyclic scaffold that significantly enhanced CCK signaling at CCK1Rs without intrinsically activating CCK1Rs in an overexpressing system. Our results demonstrate that a well-thought-out testing funnel can identify small molecules with a distinct pharmacological profile and provides an important milestone for the development of novel potential treatments of obesity.


Asunto(s)
Colecistoquinina , Receptores de Colecistoquinina , Colecistoquinina/metabolismo , Colecistoquinina/uso terapéutico , Humanos , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Receptores de Colecistoquinina/agonistas , Receptores de Colecistoquinina/metabolismo , Receptores de Colecistoquinina/uso terapéutico , beta-Arrestinas/metabolismo
7.
Int J Mol Sci ; 23(15)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35897648

RESUMEN

Pituitary Adenylate Cyclase-Activating Peptide (PACAP) and Vasoactive Intestinal Peptide (VIP) are neuropeptides involved in a diverse array of physiological and pathological processes through activating the PACAP subfamily of class B1 G protein-coupled receptors (GPCRs): VIP receptor 1 (VPAC1R), VIP receptor 2 (VPAC2R), and PACAP type I receptor (PAC1R). VIP and PACAP share nearly 70% amino acid sequence identity, while their receptors PAC1R, VPAC1R, and VPAC2R share 60% homology in the transmembrane regions of the receptor. PACAP binds with high affinity to all three receptors, while VIP binds with high affinity to VPAC1R and VPAC2R, and has a thousand-fold lower affinity for PAC1R compared to PACAP. Due to the wide distribution of VIP and PACAP receptors in the body, potential therapeutic applications of drugs targeting these receptors, as well as expected undesired side effects, are numerous. Designing selective therapeutics targeting these receptors remains challenging due to their structural similarities. This review discusses recent discoveries on the molecular mechanisms involved in the selectivity and signaling of the PACAP subfamily of receptors, and future considerations for therapeutic targeting.


Asunto(s)
Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Péptido Intestinal Vasoactivo , Secuencia de Aminoácidos , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Receptores de Tipo II del Péptido Intestinal Vasoactivo , Receptores de Tipo I del Polipéptido Intestinal Vasoactivo/metabolismo , Transducción de Señal , Péptido Intestinal Vasoactivo/metabolismo
8.
Mol Pharmacol ; 101(6): 400-407, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35351821

RESUMEN

Class B1 G protein-coupled receptors are activated by peptides, with amino-terminal regions critical for biologic activity. Although high resolution structures exist, understanding of key features of the peptide activation domain that drive signaling is limited. In the secretin receptor (SecR) structure, interactions are observed between peptide residues His1 and Ser2 and seventh transmembrane segment (TM7) receptor residue E373. We interrogated these interactions using systematic structure-activity analysis of peptide and receptor. His1 was critical for binding and cAMP responses, but its orientation was not critical, and substitution could independently modify affinity and efficacy. Ser2 was also critical, with all substitutions reducing peptide affinity and functional responses proportionally. Mutation of E373 to conserved acidic Asp (E373D), uncharged polar Gln (E373Q), or charge-reversed basic Arg (E373R) did not alter receptor expression, with all exhibiting secretin-dependent cAMP accumulation. All position 373 mutants displayed reduced binding affinities and cAMP potencies for many peptide analogs, although relative effects of position 1 peptides were similar whereas position 2 peptides exhibited substantial differences. The peptide including basic Lys in position 2 was active at SecR having acidic Glu in position 373 and at E373D while exhibiting minimal activity at those receptors in which an acidic residue is absent in this position (E373Q and E373R). In contrast, the peptide including acidic Glu in position 2 was equipotent with secretin at E373R while being much less potent than secretin at wild-type SecR and E373D. These data support functional importance of a charge-charge interaction between the amino-terminal region of secretin and the top of TM7. SIGNIFICANCE STATEMENT: This work refines our molecular understanding of the activation mechanisms of class B1 G protein-coupled receptors. The amino-terminal region of secretin interacts with the seventh transmembrane segment of its receptor with structural specificity and with a charge-charge interaction helping to drive functional activation.


Asunto(s)
Receptores Acoplados a Proteínas G , Secretina , Secuencia de Aminoácidos , Mutagénesis , Péptidos/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores de la Hormona Gastrointestinal , Secretina/química , Secretina/genética , Secretina/metabolismo , Relación Estructura-Actividad
9.
Psychiatr Clin North Am ; 45(1): 161-177, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35219436

RESUMEN

The onset of the COVID-19 pandemic in early 2020 had a significant impact on the delivery of behavioral health services, with significant short-term and long-range consequences. Intertwined with the delivery of services has been the financial ramifications of the pandemic. The rapid response by governmental agencies to shore up financial support for clinical services, and the swift shift to virtual care provided relief for a broad array of practice settings; however, it did not mitigate the full impact of the pandemic. Effective state, national, and international leadership, communication, and coordination are critical to improve the global response to any pandemic.


Asunto(s)
COVID-19 , Servicios de Salud Mental , Telemedicina , Atención a la Salud , Humanos , Pandemias , SARS-CoV-2
10.
Front Endocrinol (Lausanne) ; 12: 789957, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34950108

RESUMEN

Drugs useful in prevention/treatment of obesity could improve health. Cholecystokinin (CCK) is a key regulator of appetite, working through the type 1 CCK receptor (CCK1R); however, full agonists have not stimulated more weight loss than dieting. We proposed an alternate strategy to target this receptor, while reducing likelihood of side effects and/or toxicity. Positive allosteric modulators (PAMs) with minimal intrinsic agonist activity would enhance CCK action, while maintaining spatial and temporal characteristics of physiologic signaling. This could correct abnormal stimulus-activity coupling observed in a high-cholesterol environment observed in obesity. We utilized high-throughput screening to identify a molecule with this pharmacological profile and studied its basis of action. Compound 1 was a weak partial agonist, with PAM activity to enhance CCK action at CCK1R, but not CCK2R, maintained in both normal and high cholesterol. Compound 1 (10 µM) did not exhibit agonist activity or stimulate internalization of CCK1R. It enhanced CCK activity by slowing the off-rate of bound hormone, increasing its binding affinity. Computational docking of Compound 1 to CCK1R yielded plausible poses. A radioiodinatable photolabile analogue retained Compound 1 pharmacology and covalently labeled CCK1R Thr211, consistent with one proposed pose. Our study identifies a novel, selective, CCK1R PAM that binds to the receptor to enhance action of CCK-8 and CCK-58 in both normal and disease-mimicking high-cholesterol environments. This facilitates the development of compounds that target the physiologic spatial and temporal engagement of CCK1R by CCK that underpins its critical role in metabolic regulation.


Asunto(s)
Quimiocinas CC/agonistas , Quimiocinas CC/metabolismo , Colecistoquinina/metabolismo , Colecistoquinina/farmacología , Colesterol/metabolismo , Descubrimiento de Drogas/métodos , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Animales , Células CHO , Colecistoquinina/química , Cricetinae , Cricetulus , Relación Dosis-Respuesta a Droga , Humanos , Hipercolesterolemia/tratamiento farmacológico , Hipercolesterolemia/metabolismo , Macaca fascicularis , Ratones , Ratas
11.
Case Rep Oncol ; 14(2): 1248-1253, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34703443

RESUMEN

In the cerebrospinal fluid (CSF), the demonstration of malignant cells by cytological examination is currently the gold standard for the diagnosis of leptomeningeal carcinomatosis (LC). However, a positive cytology is observed in only 50-60% of patients with LC and highly dependent on pre-analytical factors. The hematology laboratory could provide an immediate and accurate diagnosis, but diagnostic sensitivity is not always optimized once the sample is received. We hereby report a 49-year-old woman with a 3-year grade III invasive ductal carcinoma who was admitted to the emergency department due to headaches, nausea, and vomiting. The CSF revealed pleocytosis with suspicious high fluorescent cells on the hematology analyzer concomitantly with biochemical alterations. Cytomorphological examination confirmed tumor cells, thus diagnosing a leptomeningeal metastasis of her breast cancer. The patient was eventually transferred to palliative care. Cytological examination is a valuable tool for a rapid diagnosis of LC if diagnostic performance is optimized. In addition to repeated CSF collections with a sufficient volume (5-10 mL), this could be reached by processing the CSF as soon as possible, taking into account the fluorescence information from the analyzer, proceeding systematically to microscopic examination even with normal CSF white blood cell count, and providing quality improvement of the staff to identify malignant cells.

12.
Artículo en Inglés | MEDLINE | ID: mdl-34485976

RESUMEN

A primary goal in pain treatment is restoration of behaviors that are disrupted by pain. Measures of pain interference indicate the degree to which pain interferes with activities in pain patients, and these measures are used to evaluate the effects of analgesic drugs. As a result of the emphasis on the expression and treatment of functional impairment in clinical settings, preclinical pain researchers have attempted to develop procedures for evaluation of pain-related functional impairment in laboratory animals. The goal of the present study was to develop and validate a low cost procedure for the objective evaluation of pain-related depression of home cage behavior in mice. On test days, a 5 × 5 cm Nestlet was weighed prior to being suspended from the wire lid of the home cage of individually housed male and female ICR mice. Over the course of experimental sessions, mice removed pieces of the suspended Nestlet, and began to build a nest with the material they removed. Thus, the weight of the pieces of Nestlet that remained suspended at various time points in the session provided an indicator of the rate of this behavior. The results indicate that Nestlet shredding was stable with repeated testing, and shredding was depressed by intra-peritoneal injection of 0.32% lactic acid. The non-steroidal anti-inflammatory drug ketoprofen blocked 0.32% lactic acid-induced depression of shredding, but did not block depression of shredding by a pharmacological stimulus, the kappa opioid receptor agonist U69,593. The µ-opioid receptor agonist morphine did not block 0.32% lactic acid-induced depression of shredding when tested up to doses that depressed shredding in the absence of lactic acid. When noxious stimulus intensity was reduced by decreasing the lactic acid concentration to 0.18%, morphine was effective at blocking pain-related depression of behavior. In summary, the data from the present study support consideration of the Nestlet shredding procedure for use in studies examining mechanisms, expression, and treatment of pain-related functional impairment.

13.
Science ; 373(6553): 413-419, 2021 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-34437114

RESUMEN

Adenosine monophosphate (AMP)-activated protein kinase (AMPK) regulates metabolism in response to the cellular energy states. Under energy stress, AMP stabilizes the active AMPK conformation, in which the kinase activation loop (AL) is protected from protein phosphatases, thus keeping the AL in its active, phosphorylated state. At low AMP:ATP (adenosine triphosphate) ratios, ATP inhibits AMPK by increasing AL dynamics and accessibility. We developed conformation-specific antibodies to trap ATP-bound AMPK in a fully inactive, dynamic state and determined its structure at 3.5-angstrom resolution using cryo-electron microscopy. A 180° rotation and 100-angstrom displacement of the kinase domain fully exposes the AL. On the basis of the structure and supporting biophysical data, we propose a multistep mechanism explaining how adenine nucleotides and pharmacological agonists modulate AMPK activity by altering AL phosphorylation and accessibility.


Asunto(s)
Proteínas Quinasas Activadas por AMP/química , Proteínas Quinasas Activadas por AMP/inmunología , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Monofosfato/metabolismo , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/metabolismo , Microscopía por Crioelectrón , Humanos , Fragmentos Fab de Inmunoglobulinas , Modelos Moleculares , Fosforilación , Conformación Proteica , Dominios Proteicos , Ingeniería de Proteínas
14.
Front Endocrinol (Lausanne) ; 12: 684656, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149622

RESUMEN

Cholecystokinin is a gastrointestinal peptide hormone with important roles in metabolic physiology and the maintenance of normal nutritional status, as well as potential roles in the prevention and management of obesity, currently one of the dominant causes of direct or indirect morbidity and mortality. In this review, we discuss the roles of this hormone and its receptors in maintaining nutritional homeostasis, with a particular focus on appetite control. Targeting this action led to the development of full agonists of the type 1 cholecystokinin receptor that have so far failed in clinical trials for obesity. The possible reasons for clinical failure are discussed, along with alternative pharmacologic strategies to target this receptor for prevention and management of obesity, including development of biased agonists and allosteric modulators. Cellular cholesterol is a natural modulator of the type 1 cholecystokinin receptor, with elevated levels disrupting normal stimulus-activity coupling. The molecular basis for this is discussed, along with strategies to overcome this challenge with a corrective positive allosteric modulator. There remains substantial scope for development of drugs to target the type 1 cholecystokinin receptor with these new pharmacologic strategies and such drugs may provide new approaches for treatment of obesity.


Asunto(s)
Colecistoquinina/metabolismo , Obesidad/tratamiento farmacológico , Receptores de Colecistoquinina/agonistas , Regulación Alostérica , Animales , Colesterol/metabolismo , Humanos , Obesidad/metabolismo , Receptores de Colecistoquinina/metabolismo
15.
PLoS Biol ; 19(6): e3001295, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34086670

RESUMEN

G protein-coupled receptors (GPCRs) are critical regulators of cellular function acting via heterotrimeric G proteins as their primary transducers with individual GPCRs capable of pleiotropic coupling to multiple G proteins. Structural features governing G protein selectivity and promiscuity are currently unclear. Here, we used cryo-electron microscopy (cryo-EM) to determine structures of the cholecystokinin (CCK) type 1 receptor (CCK1R) bound to the CCK peptide agonist, CCK-8 and 2 distinct transducer proteins, its primary transducer Gq, and the more weakly coupled Gs. As seen with other Gq/11-GPCR complexes, the Gq-α5 helix (αH5) bound to a relatively narrow pocket in the CCK1R core. Surprisingly, the backbone of the CCK1R and volume of the G protein binding pocket were essentially equivalent when Gs was bound, with the Gs αH5 displaying a conformation that arises from "unwinding" of the far carboxyl-terminal residues, compared to canonically Gs coupled receptors. Thus, integrated changes in the conformations of both the receptor and G protein are likely to play critical roles in the promiscuous coupling of individual GPCRs.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Receptores de Colecistoquinina/química , Receptores de Colecistoquinina/metabolismo , Colecistoquinina/metabolismo , Colesterol/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/química , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/ultraestructura , Subunidades alfa de la Proteína de Unión al GTP Gs/química , Subunidades alfa de la Proteína de Unión al GTP Gs/ultraestructura , Células HEK293 , Humanos , Modelos Moleculares , Unión Proteica , Receptores de Colecistoquinina/ultraestructura , Transducción de Señal
16.
Nat Methods ; 18(4): 397-405, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33686301

RESUMEN

Class C G protein-coupled receptors (GPCRs) are known to form stable homodimers or heterodimers critical for function, but the oligomeric status of class A and B receptors, which constitute >90% of all GPCRs, remains hotly debated. Single-molecule fluorescence resonance energy transfer (smFRET) is a powerful approach with the potential to reveal valuable insights into GPCR organization but has rarely been used in living cells to study protein systems. Here, we report generally applicable methods for using smFRET to detect and track transmembrane proteins diffusing within the plasma membrane of mammalian cells. We leverage this in-cell smFRET approach to show agonist-induced structural dynamics within individual metabotropic glutamate receptor dimers. We apply these methods to representative class A, B and C receptors, finding evidence for receptor monomers, density-dependent dimers and constitutive dimers, respectively.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia/métodos , Receptores Acoplados a Proteínas G/metabolismo , Dimerización , Conformación Proteica , Receptores Acoplados a Proteínas G/química
17.
Biochem Pharmacol ; 185: 114451, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33545115

RESUMEN

The secretin receptor (SCTR) is a prototypic Class B1 G protein-coupled receptor (GPCR) that represents a key target for the development of therapeutics for the treatment of cardiovascular, gastrointestinal, and metabolic disorders. However, no non-peptidic molecules targeting this receptor have yet been disclosed. Using a high-throughput screening campaign directed at SCTR to identify small molecule modulators, we have identified three structurally related scaffolds positively modulating SCTRs. Here we outline a comprehensive study comprising a structure-activity series based on commercially available analogs of the three hit scaffold sets A (2-sulfonyl pyrimidines), B (2-mercapto pyrimidines) and C (2-amino pyrimidines), which revealed determinants of activity, cooperativity and specificity. Structural optimization of original hits resulted in analog B2, which substantially enhances signaling of truncated secretin peptides and prolongs residence time of labeled secretin up to 13-fold in a dose-dependent manner. Furthermore, we found that investigated compounds display structural similarity to positive allosteric modulators (PAMs) active at the glucagon-like peptide-1 receptor (GLP-1R), and we were able to confirm cross-recognition of that receptor by a subset of analogs. Studies using SCTR and GLP-1R mutants revealed that scaffold A, but not B and C, likely acts via two distinct mechanisms, one of which constitutes covalent modification of Cys-347GLP-1R known from GLP-1R-selective modulators. The scaffolds identified in this study might not only serve as novel pharmacologic tools to decipher SCTR- or GLP-1R-specific signaling pathways, but also as structural leads to elucidate allosteric binding sites facilitating the future development of orally available therapeutic approaches targeting these receptors.


Asunto(s)
Descubrimiento de Drogas/métodos , Pirimidinas/química , Pirimidinas/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Receptores de la Hormona Gastrointestinal/química , Receptores de la Hormona Gastrointestinal/metabolismo , Regulación Alostérica/efectos de los fármacos , Regulación Alostérica/fisiología , Secuencia de Aminoácidos , Animales , Células CHO , Línea Celular Tumoral , Cricetinae , Cricetulus , Relación Dosis-Respuesta a Droga , Células HEK293 , Humanos , Unión Proteica/fisiología , Pirimidinas/farmacología , Ratas , Relación Estructura-Actividad
18.
Geobiology ; 19(4): 376-393, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33629529

RESUMEN

Mono Lake is a closed-basin, hypersaline, alkaline lake located in Eastern Sierra Nevada, California, that is dominated by microbial life. This unique ecosystem offers a natural laboratory for probing microbial community responses to environmental change. In 2017, a heavy snowpack and subsequent runoff led Mono Lake to transition from annually mixed (monomictic) to indefinitely stratified (meromictic). We followed microbial succession during this limnological shift, establishing a two-year (2017-2018) water-column time series of geochemical and microbiological data. Following meromictic conditions, anoxia persisted below the chemocline and reduced compounds such as sulfide and ammonium increased in concentration from near 0 to ~400 and ~150 µM, respectively, throughout 2018. We observed significant microbial succession, with trends varying by water depth. In the epilimnion (above the chemocline), aerobic heterotrophs were displaced by phototrophic genera when a large bloom of cyanobacteria appeared in fall 2018. Bacteria in the hypolimnion (below the chemocline) had a delayed, but systematic, response reflecting colonization by sediment "seed bank" communities. Phototrophic sulfide-oxidizing bacteria appeared first in summer 2017, followed by microbes associated with anaerobic fermentation in spring 2018, and eventually sulfate-reducing taxa by fall 2018. This slow shift indicated that multi-year meromixis was required to establish a sulfate-reducing community in Mono Lake, although sulfide oxidizers thrive throughout mixing regimes. The abundant green alga Picocystis remained the dominant primary producer during the meromixis event, abundant throughout the water column including in the hypolimnion despite the absence of light and prevalence of sulfide. Our study adds to the growing literature describing microbial resistance and resilience during lake mixing events related to climatic events and environmental change.


Asunto(s)
Ecosistema , Lagos , Bacterias , California , Filogenia
19.
Biochim Biophys Acta Biomembr ; 1863(9): 183557, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-33444621

RESUMEN

G protein-coupled receptors (GPCRs) are known to be modulated by membrane cholesterol levels, but whether or not the effects are caused by specific receptor-cholesterol interactions or cholesterol's general effects on the membrane is not well-understood. We performed coarse-grained molecular dynamics (CGMD) simulations coupled with structural bioinformatics approaches on the ß2-adrenergic receptor (ß2AR) and the cholecystokinin (CCK) receptor subfamily. The ß2AR has been shown to be sensitive to membrane cholesterol and cholesterol molecules have been clearly resolved in numerous ß2AR crystal structures. The two CCK receptors are highly homologous and preserve similar cholesterol recognition motifs but despite their homology, CCK1R shows functional sensitivity to membrane cholesterol while CCK2R does not. Our results offer new insights into how cholesterol modulates GPCR function by showing cholesterol interactions with ß2AR that agree with previously published data; additionally, we observe differential and specific cholesterol binding in the CCK receptor subfamily while revealing a previously unreported Cholesterol Recognition Amino-acid Consensus (CRAC) sequence that is also conserved across 38% of class A GPCRs. A thermal denaturation assay (LCP-Tm) shows that mutation of a conserved CRAC sequence on TM7 of the ß2AR affects cholesterol stabilization of the receptor in a lipid bilayer. The results of this study provide a better understanding of receptor-cholesterol interactions that can contribute to novel and improved therapeutics for a variety of diseases.


Asunto(s)
Colesterol/química , Receptores Acoplados a Proteínas G/química , Modelos Moleculares
20.
SLAS Discov ; 26(1): 1-16, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32749201

RESUMEN

The secretin receptor (SCTR), a prototypical class B G protein-coupled receptor (GPCR), exerts its effects mainly by activating Gαs proteins upon binding of its endogenous peptide ligand secretin. SCTRs can be found in a variety of tissues and organs across species, including the pancreas, stomach, liver, heart, lung, colon, kidney, and brain. Beyond that, modulation of SCTR-mediated signaling has therapeutic potential for the treatment of multiple diseases, such as heart failure, obesity, and diabetes. However, no ligands other than secretin and its peptide analogs have been described to regulate SCTRs, probably due to inherent challenges in family B GPCR drug discovery. Here we report creation of a testing funnel that allowed targeted detection of SCTR small-molecule activators. Pursuing the strategy to identify positive allosteric modulators (PAMs), we established a unique primary screening assay employing a mixture of three orthosteric stimulators that was compared in a screening campaign testing 12,000 small-molecule compounds. Beyond that, we developed a comprehensive set of secondary assays, such as a radiolabel-free target engagement assay and a NanoBiT (NanoLuc Binary Technology)-based approach to detect ß-arrestin-2 recruitment, all feasible in a high-throughput environment as well as capable of profiling ligands and hits regarding their effect on binding and receptor function. This combination of methods enabled the discovery of five promising scaffolds, four of which have been validated and further characterized with respect to their allosteric activities. We propose that our results may serve as starting points for developing the first in vivo active small molecules targeting SCTRs.


Asunto(s)
Desarrollo de Medicamentos/métodos , Receptores Acoplados a Proteínas G/antagonistas & inhibidores , Receptores Acoplados a Proteínas G/química , Receptores de la Hormona Gastrointestinal/antagonistas & inhibidores , Receptores de la Hormona Gastrointestinal/química , Animales , Ciencias Bioconductuales , Células CHO , Calcio/metabolismo , Proteínas Portadoras , Cricetulus , AMP Cíclico/metabolismo , Expresión Génica , Genes Reporteros , Células HEK293 , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Ligandos , Péptidos/química , Péptidos/farmacología , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA