Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Oncogene ; 43(15): 1127-1148, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38396294

RESUMEN

In 2020, we identified cancer-specific microbial signals in The Cancer Genome Atlas (TCGA) [1]. Multiple peer-reviewed papers independently verified or extended our findings [2-12]. Given this impact, we carefully considered concerns by Gihawi et al. [13] that batch correction and database contamination with host sequences artificially created the appearance of cancer type-specific microbiomes. (1) We tested batch correction by comparing raw and Voom-SNM-corrected data per-batch, finding predictive equivalence and significantly similar features. We found consistent results with a modern microbiome-specific method (ConQuR [14]), and when restricting to taxa found in an independent, highly-decontaminated cohort. (2) Using Conterminator [15], we found low levels of human contamination in our original databases (~1% of genomes). We demonstrated that the increased detection of human reads in Gihawi et al. [13] was due to using a newer human genome reference. (3) We developed Exhaustive, a method twice as sensitive as Conterminator, to clean RefSeq. We comprehensively host-deplete TCGA with many human (pan)genome references. We repeated all analyses with this and the Gihawi et al. [13] pipeline, and found cancer type-specific microbiomes. These extensive re-analyses and updated methods validate our original conclusion that cancer type-specific microbial signatures exist in TCGA, and show they are robust to methodology.


Asunto(s)
Microbiota , Neoplasias , Humanos , Neoplasias/genética , Microbiota/genética
3.
View (Beijing) ; 3(1)2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35872970

RESUMEN

The pursuit of highly sensitive and specific cancer diagnostics based on cell-free (cf) nucleic acids isolated from minimally invasive liquid biopsies has been an area of intense research and commercial effort for at least two decades. Most of these tests detect cancer-specific mutations or epigenetic modifications on circulating DNA derived from tumor cells (ctDNA). Although recent FDA approvals of both single and multi-analyte liquid biopsy companion diagnostic assays are proof of the tremendous progress made in this domain, using ctDNA for the diagnosis of early-stage (stage I/II) cancers remains challenging due to several factors, such as low mutational allele frequency in circulation, overlapping profiles in genomic alterations among diverse cancers, and clonal hematopoiesis. This review discusses these analytical challenges, interim solutions, and the opportunity to complement ctDNA diagnostics with microbiome-aware analyses that may mitigate several existing ctDNA assay limitations.

4.
Biotechniques ; 70(3): 149-159, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33512248

RESUMEN

One goal of microbial ecology researchers is to capture the maximum amount of information from all organisms in a sample. The recent COVID-19 pandemic, caused by the RNA virus SARS-CoV-2, has highlighted a gap in traditional DNA-based protocols, including the high-throughput methods the authors previously established as field standards. To enable simultaneous SARS-CoV-2 and microbial community profiling, the authors compared the relative performance of two total nucleic acid extraction protocols with the authors' previously benchmarked protocol. The authors included a diverse panel of environmental and host-associated sample types, including body sites commonly swabbed for COVID-19 testing. Here the authors present results comparing the cost, processing time, DNA and RNA yield, microbial community composition, limit of detection and well-to-well contamination between these protocols.


Asunto(s)
ADN Viral/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Microbiota/genética , ARN Ribosómico 16S/aislamiento & purificación , SARS-CoV-2/genética , Animales , Biodiversidad , Gatos , Fraccionamiento Químico/métodos , Heces/microbiología , Heces/virología , Femenino , Alimentos Fermentados/microbiología , Humanos , Límite de Detección , Masculino , Metagenómica/métodos , Ratones , Saliva/microbiología , Saliva/virología , Piel/microbiología , Piel/virología
5.
bioRxiv ; 2020 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-33200135

RESUMEN

One goal among microbial ecology researchers is to capture the maximum amount of information from all organisms in a sample. The recent COVID-19 pandemic, caused by the RNA virus SARS-CoV-2, has highlighted a gap in traditional DNA-based protocols, including the high-throughput methods we previously established as field standards. To enable simultaneous SARS-CoV-2 and microbial community profiling, we compare the relative performance of two total nucleic acid extraction protocols and our previously benchmarked protocol. We included a diverse panel of environmental and host-associated sample types, including body sites commonly swabbed for COVID-19 testing. Here we present results comparing the cost, processing time, DNA and RNA yield, microbial community composition, limit of detection, and well-to-well contamination, between these protocols. Accession numbers: Raw sequence data were deposited at the European Nucleotide Archive (accession#: ERP124610) and raw and processed data are available at Qiita (Study ID: 12201). All processing and analysis code is available on GitHub ( github.com/justinshaffer/Extraction_test_MagMAX ). Methods summary: To allow for downstream applications involving RNA-based organisms such as SARS-CoV-2, we compared the two extraction protocols designed to extract DNA and RNA against our previously established protocol for extracting only DNA for microbial community analyses. Across 10 diverse sample types, one of the two protocols was equivalent or better than our established DNA-based protocol. Our conclusion is based on per-sample comparisons of DNA and RNA yield, the number of quality sequences generated, microbial community alpha- and beta-diversity and taxonomic composition, the limit of detection, and extent of well-to-well contamination.

6.
Nature ; 579(7800): 567-574, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32214244

RESUMEN

Systematic characterization of the cancer microbiome provides the opportunity to develop techniques that exploit non-human, microorganism-derived molecules in the diagnosis of a major human disease. Following recent demonstrations that some types of cancer show substantial microbial contributions1-10, we re-examined whole-genome and whole-transcriptome sequencing studies in The Cancer Genome Atlas11 (TCGA) of 33 types of cancer from treatment-naive patients (a total of 18,116 samples) for microbial reads, and found unique microbial signatures in tissue and blood within and between most major types of cancer. These TCGA blood signatures remained predictive when applied to patients with stage Ia-IIc cancer and cancers lacking any genomic alterations currently measured on two commercial-grade cell-free tumour DNA platforms, despite the use of very stringent decontamination analyses that discarded up to 92.3% of total sequence data. In addition, we could discriminate among samples from healthy, cancer-free individuals (n = 69) and those from patients with multiple types of cancer (prostate, lung, and melanoma; 100 samples in total) solely using plasma-derived, cell-free microbial nucleic acids. This potential microbiome-based oncology diagnostic tool warrants further exploration.


Asunto(s)
Microbiota/genética , Neoplasias/diagnóstico , Neoplasias/microbiología , Plasma/microbiología , Estudios de Casos y Controles , Estudios de Cohortes , ADN Bacteriano/sangre , ADN Viral/sangre , Conjuntos de Datos como Asunto , Femenino , Humanos , Biopsia Líquida , Neoplasias Pulmonares/sangre , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/microbiología , Masculino , Melanoma/sangre , Melanoma/diagnóstico , Melanoma/microbiología , Neoplasias/sangre , Neoplasias de la Próstata/sangre , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/microbiología , Reproducibilidad de los Resultados
7.
mSystems ; 5(2)2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32184365

RESUMEN

Lifestyle factors, such as diet, strongly influence the structure, diversity, and composition of the microbiome. While we have witnessed over the last several years a resurgence of interest in fermented foods, no study has specifically explored the effects of their consumption on gut microbiota in large cohorts. To assess whether the consumption of fermented foods is associated with a systematic signal in the gut microbiome and metabolome, we used a multi-omic approach (16S rRNA amplicon sequencing, metagenomic sequencing, and untargeted mass spectrometry) to analyze stool samples from 6,811 individuals from the American Gut Project, including 115 individuals specifically recruited for their frequency of fermented food consumption for a targeted 4-week longitudinal study. We observed subtle but statistically significant differences between consumers and nonconsumers in beta diversity as well as differential taxa between the two groups. We found that the metabolome of fermented food consumers was enriched with conjugated linoleic acid (CLA), a putatively health-promoting molecule. Cross-omic analyses between metagenomic sequencing and mass spectrometry suggest that CLA may be driven by taxa associated with fermented food consumers. Collectively, we found modest yet persistent signatures associated with fermented food consumption that appear present in multiple -omic types which motivate further investigation of how different types of fermented food impact the gut microbiome and overall health.IMPORTANCE Public interest in the effects of fermented food on the human gut microbiome is high, but limited studies have explored the association between fermented food consumption and the gut microbiome in large cohorts. Here, we used a combination of omics-based analyses to study the relationship between the microbiome and fermented food consumption in thousands of people using both cross-sectional and longitudinal data. We found that fermented food consumers have subtle differences in their gut microbiota structure, which is enriched in conjugated linoleic acid, thought to be beneficial. The results suggest that further studies of specific kinds of fermented food and their impacts on the microbiome and health will be useful.

8.
Exp Biol Med (Maywood) ; 244(6): 494-504, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30776908

RESUMEN

IMPACT STATEMENT: Considering the clear effects of microbiota on important aspects of animal biology and development (including in humans), this topic is timely and broadly appealing, as it compels us to consider the possibilities of altering the microbiome (without antibiotics) to positively affect animal health. In this review, we highlight three general approaches to manipulating the microbiome that have demonstrated success and promise for use in animal health. We also point out knowledge gaps where further inquiry would most benefit the field. Our paper not only provides a short and digestible overview of the current state of application, but also calls for further exploration of the microbial diversity at hand to expand our toolkit, while also leveraging the diversity and flexibility of animal systems to better understand mechanisms of efficacy.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Medicina Veterinaria/métodos , Medicina Veterinaria/tendencias , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...