Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 375
Filtrar
1.
FASEB J ; 38(8): e23615, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38651657

RESUMEN

Athletes increasingly engage in repeated sprint training consisting in repeated short all-out efforts interspersed by short recoveries. When performed in hypoxia (RSH), it may lead to greater training effects than in normoxia (RSN); however, the underlying molecular mechanisms remain unclear. This study aimed at elucidating the effects of RSH on skeletal muscle metabolic adaptations as compared to RSN. Sixteen healthy young men performed nine repeated sprint training sessions in either normoxia (FIO2 = 0.209, RSN, n = 7) or normobaric hypoxia (FIO2 = 0.136, RSH, n = 9). Before and after the training period, exercise performance was assessed by using repeated sprint ability (RSA) and Wingate tests. Vastus lateralis muscle biopsies were performed to investigate muscle metabolic adaptations using proteomics combined with western blot analysis. Similar improvements were observed in RSA and Wingate tests in both RSN and RSH groups. At the muscle level, RSN and RSH reduced oxidative phosphorylation protein content but triggered an increase in mitochondrial biogenesis proteins. Proteomics showed an increase in several S100A family proteins in the RSH group, among which S100A13 most strongly. We confirmed a significant increase in S100A13 protein by western blot in RSH, which was associated with increased Akt phosphorylation and its downstream targets regulating protein synthesis. Altogether our data indicate that RSH may activate an S100A/Akt pathway to trigger specific adaptations as compared to RSN.


Asunto(s)
Adaptación Fisiológica , Hipoxia , Músculo Esquelético , Proteínas S100 , Transducción de Señal , Humanos , Masculino , Hipoxia/metabolismo , Músculo Esquelético/metabolismo , Adaptación Fisiológica/fisiología , Transducción de Señal/fisiología , Adulto Joven , Proteínas S100/metabolismo , Adulto , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ejercicio Físico/fisiología
2.
Exp Physiol ; 109(5): 804-811, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38509637

RESUMEN

Microvascular impairments are typical of several cardiovascular diseases. Near-infrared spectroscopy (NIRS) combined with a vascular occlusion test provides non-invasive insights into microvascular responses by monitoring skeletal muscle oxygenation changes during reactive hyperaemia. Despite increasing interest in the effects of sex and ageing on microvascular responses, evidence remains inconsistent. Therefore, the present study aimed to investigate the effects of sex and age on microvascular responsiveness. Twenty-seven participants (seven young men and seven young women; seven older men and six older women; aged 26 ± 1, 26 ± 4, 67 ± 3 and 69 ± 4 years, respectively) completed a vascular occlusion test consisting of 5 min of arterial occlusion followed by 5 min reperfusion. Oxygenation changes in the vastus lateralis were monitored by near-infrared spectroscopy. The findings revealed that both women (referring to young and older women) and older participants (referring to both men and women) exhibited lower microvascular responsiveness. Notably, both women and older participants demonstrated reduced desaturation (-38% and -59%, respectively) and reperfusion rates (-24% and -40%, respectively) along with a narrower range of tissue oxygenation (-39% and -39%, respectively) and higher minimal tissue oxygenation levels (+34% and +21%, respectively). Women additionally displayed higher values in resting (+12%) and time-to-peak (+15%) tissue oxygenation levels. In conclusion, this study confirmed decreased microvascular responses in women and older individuals. These results emphasize the importance of considering sex and age when studying microvascular responses. Further research is needed to uncover the underlying mechanisms and clinical relevance of these findings, enabling the development of tailored strategies for preserving vascular health in diverse populations.


Asunto(s)
Hiperemia , Microcirculación , Espectroscopía Infrarroja Corta , Humanos , Masculino , Femenino , Hiperemia/fisiopatología , Hiperemia/metabolismo , Adulto , Anciano , Microcirculación/fisiología , Caracteres Sexuales , Microvasos/fisiopatología , Músculo Esquelético/metabolismo , Músculo Esquelético/irrigación sanguínea , Músculo Esquelético/fisiopatología , Envejecimiento/fisiología , Persona de Mediana Edad , Oxígeno/metabolismo , Consumo de Oxígeno/fisiología , Adulto Joven , Factores de Edad , Factores Sexuales
3.
Med Sci Sports Exerc ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38530208

RESUMEN

PURPOSE: Both maximal-intensity exercise and altitude exposure challenge the pulmonary system that may reach its maximal capacities. Expiratory flow limitation (EFL) and exercise-induced hypoxemia (EIH) are common in endurance-trained athletes. Furthermore, due to their smaller airways and lung size, women, independently of their fitness level, may be more prone to pulmonary limitations during maximal-intensity exercise; particularly when performed in hypoxic conditions. The objective of this study was to investigate the impact of sex and fitness level on pulmonary limitations during maximal exercise in normoxia and their consequences in acute hypoxia. METHODS: Fifty-one participants were distributed across four different groups according to sex and fitness level. Participants visited the laboratory on three occasions to perform maximal incremental cycling tests in normoxia and hypoxia (inspired oxygen fraction = 0.14) and two hypoxic chemosensitivity tests. Pulmonary function and ventilatory capacities were evaluated at each visit. RESULTS: EIH was more prevalent (62.5% vs. 22.2%, p = 0.004) and EFL less common (37.5% vs. 70.4%, p = 0.019) in women than men. EIH prevalence was different (p = 0.004) between groups of trained men (41.7%), control men (6.7%), trained women (50.0%), and control women (75.0%). All EIH men but only 40% of EIH women exhibited EFL. EFL individuals had higher slope ratio (p = 0.029), higher ventilation (V̇E) (p < 0.001), larger ΔVO2max (p = 0.019) and lower hypoxia-related V̇E increase (p < 0.001). CONCLUSIONS: Women reported a higher EIH prevalence than men, regardless of their fitness level, despite a lower EFL prevalence. EFL seems mainly due to the imbalance between ventilatory demands and capacities. It restricts ventilation, leading to a larger performance impairment during maximal exercise in hypoxic conditions.

4.
Scand J Med Sci Sports ; 34(3): e14581, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38511417

RESUMEN

The International Olympic Committee (IOC) recently published a framework on fairness, inclusion, and nondiscrimination on the basis of gender identity and sex variations. Although we appreciate the IOC's recognition of the role of sports science and medicine in policy development, we disagree with the assertion that the IOC framework is consistent with existing scientific and medical evidence and question its recommendations for implementation. Testosterone exposure during male development results in physical differences between male and female bodies; this process underpins male athletic advantage in muscle mass, strength and power, and endurance and aerobic capacity. The IOC's "no presumption of advantage" principle disregards this reality. Studies show that transgender women (male-born individuals who identify as women) with suppressed testosterone retain muscle mass, strength, and other physical advantages compared to females; male performance advantage cannot be eliminated with testosterone suppression. The IOC's concept of "meaningful competition" is flawed because fairness of category does not hinge on closely matched performances. The female category ensures fair competition for female athletes by excluding male advantages. Case-by-case testing for transgender women may lead to stigmatization and cannot be robustly managed in practice. We argue that eligibility criteria for female competition must consider male development rather than relying on current testosterone levels. Female athletes should be recognized as the key stakeholders in the consultation and decision-making processes. We urge the IOC to reevaluate the recommendations of their Framework to include a comprehensive understanding of the biological advantages of male development to ensure fairness and safety in female sports.


Asunto(s)
Medicina Deportiva , Deportes , Femenino , Humanos , Masculino , Identidad de Género , Atletas , Testosterona
5.
Front Sports Act Living ; 6: 1278454, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38313218

RESUMEN

Introduction: Modifications in asymmetry in response to self-paced efforts have not been thoroughly documented, particularly regarding horizontally-derived ground reaction force variables. We determined the magnitude and range of gait asymmetries during 800 m track running. Methods: Eighteen physical education students completed an 800 m self-paced run on a 200 m indoor track. During the run, vertical and horizontal ground reaction forces were measured at a sampling frequency of 500 Hz using a 5 m-long force platform system, with data collected once per lap. The following mechanical variables were determined for two consecutive steps: contact time and duration of braking/push-off phases along with vertical/braking/push-off peak forces and impulses. The group mean asymmetry scores were evaluated using the "symmetry angle" (SA) formula, where scores of 0% and 100% correspond to perfect symmetry and perfect asymmetry, respectively. Results: There was no influence of distance interval on SA scores for any of the nine biomechanical variables (P ≥ 0.095). The SA scores were ∼1%-2% for contact time (1.3 ± 0.5%), peak vertical forces (1.8 ± 0.9%), and vertical impulse (1.7 ± 1.0%). The SA scores were ∼3%-8% for duration of braking (3.6 ± 1.1%) and push-off (3.2 ± 1.4%) phases, peak braking (5.0 ± 2.1%) and push-off (6.9 ± 3.1%) forces as well as braking (7.6 ± 2.3%) and push-off (7.7 ± 3.3%) impulses. The running velocity progressively decreased at 300 m and 500 m compared to that at 100 m but levelled off at 700 m (P < 0.001). Discussion: There were no modifications in gait asymmetries, as measured at 200-m distance intervals during 800-m track running in physical education students. The 800 m self-paced run did not impose greater mechanical constraints on one side of the body. Experimental procedures for characterizing the gait pattern during 800 m track running could be simplified by collecting leg mechanical data from only one side.

7.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339038

RESUMEN

Parkinson's disease (PD) is associated with various deficits in sensing and responding to reductions in oxygen availability (hypoxia). Here we summarize the evidence pointing to a central role of hypoxia in PD, discuss the relation of hypoxia and oxygen dependence with pathological hallmarks of PD, including mitochondrial dysfunction, dopaminergic vulnerability, and alpha-synuclein-related pathology, and highlight the link with cellular and systemic oxygen sensing. We describe cases suggesting that hypoxia may trigger Parkinsonian symptoms but also emphasize that the endogenous systems that protect from hypoxia can be harnessed to protect from PD. Finally, we provide examples of preclinical and clinical research substantiating this potential.


Asunto(s)
Enfermedad de Parkinson , Trastornos Parkinsonianos , Humanos , Enfermedad de Parkinson/patología , alfa-Sinucleína , Trastornos Parkinsonianos/patología , Neuronas Dopaminérgicas/patología , Hipoxia/patología , Oxígeno
8.
Int J Sports Physiol Perform ; 19(4): 417-421, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38215729

RESUMEN

PURPOSE: We examined the effects of increasing hypoxia severity on oxygenation kinetics in the vastus lateralis muscle during repeated treadmill sprints, using statistical parametric mapping (SPM). METHODS: Ten physically active males completed 8 sprints of 5 seconds each (recovery = 25 s) on a motorized sprint treadmill in normoxia (sea level; inspired oxygen fraction = 0.21), moderate hypoxia (inspired oxygen fraction = 0.17), and severe hypoxia (SH; inspired oxygen fraction = 0.13). Continuous assessment of tissue saturation index (TSI) in the vastus lateralis muscle was conducted using near-infrared spectroscopy. Subsequently, TSI data were averaged for the sprint-recovery cycle of all sprints and compared between conditions. RESULTS: The SPM analysis revealed no discernible difference in TSI signal amplitude between conditions during the actual 5-second sprint phase. However, during the latter portion of the 25-second recovery phase, TSI values were lower in SH compared with both sea level (from 22 to 30 s; P = .003) and moderate hypoxia (from 16 to 30 s; P = .001). The mean distance covered at sea level (22.9 [1.0] m) was greater than for both moderate hypoxia (22.5 [1.2] m; P = .045) and SH (22.3 [1.4] m; P = .043). CONCLUSIONS: The application of SPM demonstrated that only SH reduced muscle oxygenation levels during the late portion of the passive (recovery) phase and not the active (sprint) phase during repeated treadmill sprints. These findings underscore the usefulness of SPM for assessing muscle oxygenation differences due to hypoxic exposure and the importance of the duration of the between-sprints recovery period.


Asunto(s)
Hipoxia , Oxígeno , Masculino , Humanos , Prueba de Esfuerzo , Músculo Cuádriceps , Consumo de Oxígeno
9.
Int J Sports Physiol Perform ; 19(3): 280-289, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38171353

RESUMEN

PURPOSE: This study aimed to investigate acute psychophysiological responses to repeated-sprint training in hypoxia (RSH) combined with whole-body cryotherapy (WBC). METHOD: Sixteen trained cyclists performed 3 sessions in randomized order: RSH, WBC-RSH (WBC pre-RSH), and RSH-WBC (WBC post-RSH). RSH consisted of 3 sets of 5 × 10-second sprints with 20-second recovery at a simulated altitude of 3000 m. Power output, muscle oxygenation (tissue saturation index), heart-rate variability, and recovery perception were analyzed. Sleep quality was assessed on the nights following test sessions and compared with a control night using nocturnal ActiGraphy and heart-rate variability. RESULTS: Power output did not differ between the conditions (P = .27), while the decrease in tissue saturation index was reduced for WBC-RSH compared to RSH-WBC in the last set. In both conditions with WBC, the recovery perception was higher compared to RSH (WBC-RSH: +15.4%, and RSH-WBC: +21.9%, P < .05). The number of movements during the RSH-WBC night was significantly lower than for the control night (-18.7%, P < .01) and WBC-RSH (-14.9%, P < .05). RSH led to a higher root mean square of the successive differences of R-R intervals and high-frequency band during the first hour of sleep compared to the control night (P < .05) and RSH-WBC (P < .01). CONCLUSIONS: Inclusion of WBC in an RSH session did not modify the power output but could improve prolonged performance in hypoxia by maintaining muscle oxygenation. A single RSH session did not deteriorate sleep quality. WBC, particularly when performed after RSH, positively influenced recovery perception and sleep.


Asunto(s)
Rendimiento Atlético , Carrera , Humanos , Rendimiento Atlético/fisiología , Hipoxia , Carrera/fisiología , Músculos , Altitud
11.
Physiol Rep ; 12(1): e15857, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38172085

RESUMEN

Premature birth may result in specific cardiovascular responses to hypoxia and hypercapnia, that might hamper high-altitude acclimatization. This study investigated the consequences of premature birth on baroreflex sensitivity (BRS) under hypoxic, hypobaric and hypercapnic conditions. Seventeen preterm born males (gestational age, 29 ± 1 weeks), and 17 age-matched term born adults (40 ± 0 weeks) underwent consecutive 6-min stages breathing different oxygen and carbon dioxide concentrations at both sea-level and high-altitude (3375 m). Continuous blood pressure and ventilatory parameters were recorded in normobaric normoxia (NNx), normobaric normoxic hypercapnia (NNx + CO2 ), hypobaric hypoxia (HHx), hypobaric normoxia (HNx), hypobaric normoxia hypercapnia (HNx + CO2 ), and hypobaric hypoxia with end-tidal CO2 clamped at NNx value (HHx + clamp). BRS was assessed using the sequence method. Across all conditions, BRS was lower in term born compared to preterm (13.0 ± 7.5 vs. 21.2 ± 8.8 ms⋅mmHg-1 , main group effect: p < 0.01) participants. BRS was lower in HHx compared to NNx in term born (10.5 ± 4.9 vs. 16.0 ± 6.0 ms⋅mmHg-1 , p = 0.05), but not in preterm (27.3 ± 15.7 vs. 17.6 ± 8.3 ms⋅mmHg-1 , p = 0.43) participants, leading to a lower BRS in HHx in term born compared to preterm (p < 0.01). In conclusion, this study reports a blunted response of BRS during acute high-altitude exposure without any influence of changes in inspired CO2 in healthy prematurely born adults.


Asunto(s)
Dióxido de Carbono , Nacimiento Prematuro , Adulto , Femenino , Recién Nacido , Masculino , Humanos , Lactante , Hipercapnia , Barorreflejo , Hipoxia , Oxígeno , Altitud
12.
Physiol Rep ; 12(1): e15890, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38195247

RESUMEN

Swimmer athletes showed a decreased ventilatory response and reduced sympathetic activation during peripheral hypoxic chemoreflex stimulation. Based on these observations, we hypothesized that swimmers develop a diminished cardiorespiratory coupling due to their decreased hypoxic peripheral response. To resolve this hypothesis, we conducted a study using coherence time-varying analysis to assess the cardiorespiratory coupling in swimmer athletes. We recruited 12 trained swimmers and 12 control subjects for our research. We employed wavelet time-varying spectral coherence analysis to examine the relationship between the respiratory frequency (Rf ) and the heart rate (HR) time series during normoxia and acute chemoreflex activation induced by five consecutive inhalations of 100% N2 . Comparing swimmers to control subjects, we observed a significant reduction in the hypoxic ventilatory responses to N2 in swimmers (0.012 ± 0.001 vs. 0.015 ± 0.001 ΔVE /ΔVO2 , and 0.365 ± 0.266 vs. 1.430 ± 0.961 ΔVE /ΔVCO2 /ΔSpO2 , both p < 0.001, swimmers vs. control, respectively). Furthermore, the coherence at the LF cutoff during hypoxia was significantly lower in swimmers compared to control subjects (20.118 ± 3.502 vs. 24.935 ± 3.832 area under curve [AUC], p < 0.012, respectively). Our findings strongly indicate that due to their diminished chemoreflex control, swimmers exhibited a substantial decrease in cardiorespiratory coupling during hypoxic stimulation.


Asunto(s)
Atletas , Hipoxia , Humanos , Frecuencia Cardíaca , Frecuencia Respiratoria , Factores de Tiempo
13.
Scand J Med Sci Sports ; 34(1): e14503, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37747708

RESUMEN

PURPOSE: Hot water immersion (HWI) has gained popularity to promote muscle recovery, despite limited data on the optimal heat dose. The purpose of this study was to compare the responses of two exogenous heat strains on core body temperature, hemodynamic adjustments, and key functional markers of muscle recovery following exercise-induced muscle damage (EIMD). METHODS: Twenty-eight physically active males completed an individually tailored EIMD protocol immediately followed by one of the following recovery interventions: HWI (40°C, HWI40 ), HWI (41°C, HWI41 ) or warm water immersion (36°C, CON36 ). Gastrointestinal temperature (Tgi ), hemodynamic adjustments (cardiac output [CO], mean arterial pressure [MAP], and systemic vascular resistance [SVR]), pre-frontal cortex deoxyhemoglobin (HHb), ECG-derived respiratory frequency, and subjective perceptual measures were tracked throughout immersion. In addition, functional markers of muscle fatigue (maximal concentric peak torque [Tpeak ]) and muscle damage (late-phase rate of force development [RFD100-200 ]) were measured prior to EIMD (pre-), 24 h (post-24 h), and 48 h (post-48 h) post-EIMD. RESULTS: By the end of immersion, HWI41 led to significantly higher Tgi values than HWI40 (38.8 ± 0.1 vs. 38.0°C ± 0.6°C, p < 0.001). While MAP was well maintained throughout immersion, only HWI41 led to increased (HHb) (+4.2 ± 1.47 µM; p = 0.005) and respiratory frequency (+4.0 ± 1.21 breath.min-1 ; p = 0.032). Only HWI41 mitigated the decline in RFD100-200 at post-24 h (-7.1 ± 31.8%; p = 0.63) and Tpeak at post-48 h (-3.1 ± 4.3%, p = 1). CONCLUSION: In physically active males, maintaining a core body temperature of ~25 min within the range of 38.5°C-39°C has been found to be effective in improving muscle recovery, while minimizing the risk of excessive physiological heat strain.


Asunto(s)
Temperatura Corporal , Fatiga Muscular , Humanos , Masculino , Calor , Inmersión , Fatiga Muscular/fisiología , Temperatura , Agua
14.
Sports Med ; 54(2): 271-287, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37902936

RESUMEN

Sex differences in physiological responses to various stressors, including exercise, have been well documented. However, the specific impact of these differences on exposure to hypoxia, both at rest and during exercise, has remained underexplored. Many studies on the physiological responses to hypoxia have either excluded women or included only a limited number without analyzing sex-related differences. To address this gap, this comprehensive review conducted an extensive literature search to examine changes in physiological functions related to oxygen transport and consumption in hypoxic conditions. The review encompasses various aspects, including ventilatory responses, cardiovascular adjustments, hematological alterations, muscle metabolism shifts, and autonomic function modifications. Furthermore, it delves into the influence of sex hormones, which evolve throughout life, encompassing considerations related to the menstrual cycle and menopause. Among these physiological functions, the ventilatory response to exercise emerges as one of the most sex-sensitive factors that may modify reactions to hypoxia. While no significant sex-based differences were observed in cardiac hemodynamic changes during hypoxia, there is evidence of greater vascular reactivity in women, particularly at rest or when combined with exercise. Consequently, a diffusive mechanism appears to be implicated in sex-related variations in responses to hypoxia. Despite well-established sex disparities in hematological parameters, both acute and chronic hematological responses to hypoxia do not seem to differ significantly between sexes. However, it is important to note that these responses are sensitive to fluctuations in sex hormones, and further investigation is needed to elucidate the impact of the menstrual cycle and menopause on physiological responses to hypoxia.


Asunto(s)
Altitud , Hipoxia , Humanos , Femenino , Masculino , Ejercicio Físico/fisiología , Hormonas Esteroides Gonadales , Corazón , Consumo de Oxígeno/fisiología
15.
Ageing Res Rev ; 93: 102147, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38036102

RESUMEN

Cardinal motor symptoms in Parkinson's disease (PD) include bradykinesia, rest tremor and/or rigidity. This symptomatology can additionally encompass abnormal gait, balance and postural patterns at advanced stages of the disease. Besides pharmacological and surgical therapies, physical exercise represents an important strategy for the management of these advanced impairments. Traditionally, diagnosis and classification of such abnormalities have relied on partially subjective evaluations performed by neurologists during short and temporally scattered hospital appointments. Emerging sports medical methods, including wearable sensor-based movement assessment and computational-statistical analysis, are paving the way for more objective and systematic diagnoses in everyday life conditions. These approaches hold promise to facilitate customizing clinical trials to specific PD groups, as well as personalizing neuromodulation therapies and exercise prescriptions for each individual, remotely and regularly, according to disease progression or specific motor symptoms. We aim to summarize exercise benefits for PD with a specific emphasis on gait and balance deficits, and to provide an overview of recent advances in movement analysis approaches, notably from the sports science community, with value for diagnosis and prognosis. Although such techniques are becoming increasingly available, their standardization and optimization for clinical purposes is critically missing, especially in their translation to complex neurodegenerative disorders such as PD. We highlight the importance of integrating state-of-the-art gait and movement analysis approaches, in combination with other motor, electrophysiological or neural biomarkers, to improve the understanding of the diversity of PD phenotypes, their response to therapies and the dynamics of their disease progression.


Asunto(s)
Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/terapia , Terapia por Ejercicio , Marcha , Progresión de la Enfermedad , Ejercicio Físico
16.
Prog Cardiovasc Dis ; 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38061613

RESUMEN

Although peripheral artery disease (PAD) primarily affects large arteries outside the brain, PAD is also associated with elevated cerebral vulnerabilities, including greater risks for brain injury (such as stroke), cognitive decline and dementia. In the present review, we aim to evaluate recent literature and extract information on potential mechanisms linking PAD and consequences on the brain. Furthermore, we suggest novel therapeutic avenues to mitigate cognitive decline and reduce risk of brain injury in patients with PAD. Various interventions, notably exercise, directly or indirectly improve systemic blood flow and oxygen supply and are effective strategies in patients with PAD or cognitive decline. Moreover, triggering protective cellular and systemic mechanisms by modulating inspired oxygen concentrations are emerging as potential novel treatment strategies. While several genetic and pharmacological approaches to modulate adaptations to hypoxia showed promising results in preclinical models of PAD, no clear benefits have yet been clinically demonstrated. We argue that genetic/pharmacological regulation of the involved adaptive systems remains challenging but that therapeutic variation of inspired oxygen levels (e.g., hypoxia conditioning) are promising future interventions to mitigate associated cognitive decline in patients with PAD.

17.
Sports Med ; 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38082199

RESUMEN

The (patho-)physiological responses to hypoxia are highly heterogeneous between individuals. In this review, we focused on the roles of sex differences, which emerge as important factors in the regulation of the body's reaction to hypoxia. Several aspects should be considered for future research on hypoxia-related sex differences, particularly altitude training and clinical applications of hypoxia, as these will affect the selection of the optimal dose regarding safety and efficiency. There are several implications, but there are no practical recommendations if/how women should behave differently from men to optimise the benefits or minimise the risks of these hypoxia-related practices. Here, we evaluate the scarce scientific evidence of distinct (patho)physiological responses and adaptations to high altitude/hypoxia, biomechanical/anatomical differences in uphill/downhill locomotion, which is highly relevant for exercising in mountainous environments, and potentially differential effects of altitude training in women. Based on these factors, we derive sex-specific recommendations for mountain sports and intermittent hypoxia conditioning: (1) Although higher vulnerabilities of women to acute mountain sickness have not been unambiguously shown, sex-dependent physiological reactions to hypoxia may contribute to an increased acute mountain sickness vulnerability in some women. Adequate acclimatisation, slow ascent speed and/or preventive medication (e.g. acetazolamide) are solutions. (2) Targeted training of the respiratory musculature could be a valuable preparation for altitude training in women. (3) Sex hormones influence hypoxia responses and hormonal-cycle and/or menstrual-cycle phases therefore may be factors in acclimatisation to altitude and efficiency of altitude training. As many of the recommendations or observations of the present work remain partly speculative, we join previous calls for further quality research on female athletes in sports to be extended to the field of altitude and hypoxia.

18.
J Physiol ; 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38116893

RESUMEN

Premature birth impairs cardiac and ventilatory responses to both hypoxia and hypercapnia, but little is known about cerebrovascular responses. Both at sea level and after 2 days at high altitude (3375 m), 16 young preterm-born (gestational age, 29 ± 1 weeks) and 15 age-matched term-born (40 ± 0 weeks) adults were exposed to two consecutive 4 min bouts of hyperoxic hypercapnic conditions (3% CO2 -97% O2 ; 6% CO2 -94% O2 ), followed by two periods of voluntary hyperventilation-induced hypocapnia. We measured middle cerebral artery blood velocity, end-tidal CO2 , pulmonary ventilation, beat-by-beat mean arterial pressure and arterialized capillary blood gases. Baseline middle cerebral artery blood velocity increased at high altitude compared with sea level in term-born (+24 ± 39%, P = 0.036), but not in preterm-born (-4 ± 27%, P = 0.278) adults. The end-tidal CO2 , pulmonary ventilation and mean arterial pressure were similar between groups at sea level and high altitude. Hypocapnic cerebrovascular reactivity was higher at high altitude compared with sea level in term-born adults (+173 ± 326%, P = 0.026) but not in preterm-born adults (-21 ± 107%, P = 0.572). Hypercapnic reactivity was altered at altitude only in preterm-born adults (+125 ± 144%, P < 0.001). Collectively, at high altitude, term-born participants showed higher hypocapnic (P = 0.012) and lower hypercapnic (P = 0.020) CO2 reactivity compared with their preterm-born peers. In conclusion, exposure to high altitude revealed different cerebrovascular responses in preterm- compared with term-born adults, despite similar ventilatory responses. These findings suggest a blunted cerebrovascular response at high altitude in preterm-born adults, which might predispose these individuals to an increased risk of high-altitude illnesses. KEY POINTS: Cerebral haemodynamics and cerebrovascular reactivity in normoxia are known to be similar between term-born and prematurely born adults. In contrast, acute exposure to high altitude unveiled different cerebrovascular responses to hypoxia, hypercapnia and hypocapnia. In particular, cerebral vasodilatation was impaired in prematurely born adults, leading to an exaggerated cerebral vasoconstriction. Cardiovascular and ventilatory responses to both hypo- and hypercapnia at sea level and at high altitude were similar between control subjects and prematurely born adults. Other mechanisms might therefore underlie the observed blunted cerebral vasodilatory responses in preterm-born adults at high altitude.

19.
Sports Biomech ; : 1-12, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37990861

RESUMEN

We assessed lower limb muscle activity during the execution of first and second tennis serves, exploring whether the extent of these differences is influenced by the chosen method for normalising surface electromyography (EMG) data. Ten male competitive tennis players first completed three rounds of maximal isometric voluntary contractions (MVC) of knee extensors and plantar flexors for the left (front) and right (back) leg separately, and three squat jumps. Afterward, they executed ten first and ten-second serves. Surface EMG activity of four lower limb muscles (vastus lateralis, rectus femoris, gastrocnemius lateralis, and soleus muscles) on each leg was recorded and normalised in three different ways: to MVC; to peak/maximal activity measured during squat jump; and to the actual serve. For the rectus femoris and soleus muscles of the left leg, and the gastrocnemius lateralis and soleus muscles of the right leg, EMG amplitude differed significantly between normalisation techniques (P ≤ 0.012). All muscles showed greater activity during the first serve, although this difference was only statistically significant for the right vastus lateralis muscle (P = 0.014). In conclusion, the EMG normalisation method selected may offer similar information when comparing first and second serve, at least for leg muscles studied here.

20.
Metabolites ; 13(10)2023 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-37887428

RESUMEN

The muscle molecular adaptations to different exercise intensities in combination with hypoxia are not well understood. This study investigated the effect of low- and supramaximal-intensity hypoxic training on muscle metabolic gene expression in mice. C57BL/6 mice were divided into two groups: sedentary and training. Training consisted of 4 weeks at low or supramaximal intensity, either in normoxia or hypoxia (FiO2 = 0.13). The expression levels of genes involved in the hypoxia signaling pathway (Hif1a and Vegfa), the metabolism of glucose (Gys1, Glut4, Hk2, Pfk, and Pkm1), lactate (Ldha, Mct1, Mct4, Pdh, and Pdk4) and lipid (Cd36, Fabp3, Ucp2, Hsl, and Mcad), and mitochondrial energy metabolism and biogenesis (mtNd1, mtNd6, CytC, CytB, Pgc1a, Pgc1ß, Nrf1, Tfam, and Cs) were determined in the gastrocnemius muscle. No physical performance improvement was observed between groups. In normoxia, supramaximal intensity training caused upregulation of major genes involved in the transport of glucose and lactate, fatty acid oxidation, and mitochondrial biogenesis, while low intensity training had a minor effect. The exposure to hypoxia changed the expression of some genes in the sedentary mice but had a moderate effect in trained mice compared to respective normoxic mice. In hypoxic groups, low-intensity training increased the mRNA levels of Mcad and Cs, while supramaximal intensity training decreased the mRNA levels of Mct1 and Mct4. The results indicate that hypoxic training, regardless of exercise intensity, has a moderate effect on muscle metabolic gene expression in healthy mice.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...