Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33771922

RESUMEN

Dissolution of marine sediment is a key source of dissolved iron (Fe) that regulates the ocean carbon cycle. Currently, our prevailing understanding, encapsulated in ocean models, focuses on low-oxygen reductive supply mechanisms and neglects the emerging evidence from iron isotopes in seawater and sediment porewaters for additional nonreductive dissolution processes. Here, we combine measurements of Fe colloids and dissolved δ56Fe in shallow porewaters spanning the full depth of the South Atlantic Ocean to demonstrate that it is lithogenic colloid production that fuels sedimentary iron supply away from low-oxygen systems. Iron colloids are ubiquitous in these oxic ocean sediment porewaters and account for the lithogenic isotope signature of dissolved Fe (δ56Fe = +0.07 ± 0.07‰) within and between ocean basins. Isotope model experiments demonstrate that only lithogenic weathering in both oxic and nitrogenous zones, rather than precipitation or ligand complexation of reduced Fe species, can account for the production of these porewater Fe colloids. The broader covariance between colloidal Fe and organic carbon (OC) abundance suggests that sorption of OC may control the nanoscale stability of Fe minerals by inhibiting the loss of Fe(oxyhydr)oxides to more crystalline minerals in the sediment. Oxic ocean sediments can therefore generate a large exchangeable reservoir of organo-mineral Fe colloids at the sediment water interface (a "rusty source") that dominates the benthic supply of dissolved Fe to the ocean interior, alongside reductive supply pathways from shallower continental margins.

2.
Appl Environ Microbiol ; 84(6)2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29305510

RESUMEN

Phytoplankton replace phosphorus-containing lipids (P-lipids) with non-P analogues, boosting growth in P-limited oceans. In the model diatom Thalassiosira pseudonana, the substitution dynamics of lipid headgroups are well described, but those of the individual lipids, differing in fatty acid composition, are unknown. Moreover, the behavior of lipids outside the common headgroup classes and the relationship between lipid substitution and cellular particulate organic P (POP) have yet to be reported. We investigated these through the mass spectrometric lipidomics of P-replete (P+) and P-depleted (P-) T. pseudonana cultures. Nonlipidic POP was depleted rapidly by the initiation of P stress, followed by the cessation of P-lipid biosynthesis and per-cell reductions in the P-lipid levels of successive generations. Minor P-lipid degradative breakdown was observed, releasing P for other processes, but most P-lipids remained intact. This may confer an advantage on efficient heterotrophic lipid consumers in P-limited oceans. Glycerophosphatidylcholine (PC), the predominant P-lipid, was similar in composition to its betaine substitute lipid. During substitution, PC was less abundant per cell and was more highly unsaturated in composition. This may reflect underlying biosynthetic processes or the regulation of membrane biophysical properties subject to lipid substitution. Finally, levels of several diglycosylceramide lipids increased as much as 10-fold under P stress. These represent novel substitute lipids and potential biomarkers for the study of P limitation in situ, contributing to growing evidence highlighting the importance of sphingolipids in phycology. These findings contribute much to our understanding of P-lipid substitution, a powerful and widespread adaptation to P limitation in the oligotrophic ocean.IMPORTANCE Unicellular organisms replace phosphorus (P)-containing membrane lipids with non-P substitutes when P is scarce, allowing greater growth of populations. Previous research with the model diatom species Thalassiosira pseudonana grouped lipids by polar headgroups in their chemical structures. The significance of the research reported here is threefold. (i) We described the individual lipids within the headgroups during P-lipid substitution, revealing the relationships between lipid headgroups and hinting at the underlying biochemical processes. (ii) We measured total cellular P, placing P-lipid substitution in the context of the broader response to P stress and yielding insight into the implications of substitution in the marine environment. (iii) We identified lipids previously unknown in this system, revealing a new type of non-P substitute lipid, which is potentially useful as a biomarker for the investigation of P limitation in the ocean.


Asunto(s)
Diatomeas/metabolismo , Fósforo/metabolismo , Estrés Fisiológico , Adaptación Fisiológica , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos , Espectrometría de Masas , Lípidos de la Membrana/metabolismo , Océano Pacífico , Fosfolípidos/metabolismo , Fósforo/deficiencia , Agua de Mar/química
3.
R Soc Open Sci ; 3(9): 160284, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27703692

RESUMEN

Despite a number of studies in areas of focused methane seepage, the extent of transitional sediments of more diffuse methane seepage, and their influence upon biological communities is poorly understood. We investigated an area of reducing sediments with elevated levels of methane on the South Georgia margin around 250 m depth and report data from a series of geochemical and biological analyses. Here, the geochemical signatures were consistent with weak methane seepage and the role of sub-surface methane consumption was clearly very important, preventing gas emissions into bottom waters. As a result, the contribution of methane-derived carbon to the microbial and metazoan food webs was very limited, although sulfur isotopic signatures indicated a wider range of dietary contributions than was apparent from carbon isotope ratios. Macrofaunal assemblages had high dominance and were indicative of reducing sediments, with many taxa common to other similar environments and no seep-endemic fauna, indicating transitional assemblages. Also similar to other cold seep areas, there were samples of authigenic carbonate, but rather than occurring as pavements or sedimentary concretions, these carbonates were restricted to patches on the shells of Axinulus antarcticus (Bivalvia, Thyasiridae), which is suggestive of microbe-metazoan interactions.

4.
BMC Evol Biol ; 15: 280, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26667806

RESUMEN

BACKGROUND: Sclerolinum (Annelida: Siboglinidae) is a genus of small, wiry deep-sea tubeworms that depend on an endosymbiosis with chemosynthetic bacteria for their nutrition, notable for their ability to colonise a multitude of reducing environments. Since the early 2000s, a Sclerolinum population has been known to inhabit sediment-hosted hydrothermal vents within the Bransfield Strait, Southern Ocean, and whilst remaining undescribed, it has been suggested to play an important ecological role in this ecosystem. Here, we show that the Southern Ocean Sclerolinum population is not a new species, but more remarkably in fact belongs to the species S. contortum, first described from an Arctic mud volcano located nearly 16,000 km away. RESULTS: Our new data coupled with existing genetic studies extend the range of this species across both polar oceans and the Gulf of Mexico. Our analyses show that the populations of this species are structured on a regional scale, with greater genetic differentiation occurring between rather than within populations. Further details of the external morphology and tube structure of S. contortum are revealed through confocal and SEM imaging, and the ecology of this worm is discussed. CONCLUSIONS: These results shed further insight into the plasticity and adaptability of this siboglinid group to a range of reducing conditions, and into the levels of gene flow that occur between populations of the same species over a global extent.


Asunto(s)
Poliquetos/genética , Poliquetos/ultraestructura , Animales , Regiones Antárticas , Regiones Árticas , Bacterias/metabolismo , Flujo Génico , Respiraderos Hidrotermales , Océanos y Mares , Poliquetos/microbiología , Poliquetos/fisiología , Simbiosis
5.
Nat Commun ; 6: 10150, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26694142

RESUMEN

The Von Damm Vent Field (VDVF) is located on the flanks of the Mid-Cayman Spreading Centre, 13 km west of the axial rift, within a gabbro and peridotite basement. Unlike any other active vent field, hydrothermal precipitates at the VDVF comprise 85-90% by volume of the magnesium silicate mineral, talc. Hydrothermal fluids vent from a 3-m high, 1-m diameter chimney and other orifices at up to 215 °C with low metal concentrations, intermediate pH (5.8) and high concentrations (667 mmol kg(-1)) of chloride relative to seawater. Here we show that the VDVF vent fluid is generated by interaction of seawater with a mafic and ultramafic basement which precipitates talc on mixing with seawater. The heat flux at the VDVF is measured at 487±101 MW, comparable to the most powerful magma-driven hydrothermal systems known, and may represent a significant mode of off-axis oceanic crustal cooling not previously recognized or accounted for in global models.

6.
Appl Neuropsychol Adult ; 22(6): 407-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25781061

RESUMEN

The Cognistat is one the most frequently employed measures to briefly evaluate cognitive functioning. However, clinical experience indicates that the questions within the Judgment subtest may be biased and insensitive toward persons with motor impairments. These issues may impact the examinee's performance and decrease the validity of the test-not to mention possibly create undue emotional distress. Suggestions for rectifying these issues are presented.


Asunto(s)
Trastornos del Conocimiento/diagnóstico , Trastornos del Conocimiento/etiología , Juicio , Trastornos del Movimiento/complicaciones , Pruebas Neuropsicológicas , Femenino , Humanos , Masculino , Psicometría
7.
Appl Neuropsychol Adult ; 22(5): 332-4, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25584922

RESUMEN

Clinical experience has shown that examinees performing the Grooved Pegboard Test frequently have difficulty maintaining the manualized right-to-left placement direction with their left hand. To date, no empirical study has examined this phenomenon. The purpose of this study was to investigate whether left-hand peg placement direction (right-to-left vs. left-to-right) influences performance on this standardized test of fine motor speed and dexterity. The participants were 66 male and female student volunteers aged 18 to 58 years old. None of the participants had a history of neurologic disease/trauma or conditions that would affect motor functioning of the right and left upper extremities. Data were analyzed using a two-way mixed-design analysis of covariance. Results revealed a significant main effect for gender, F(1, 62) = 5.638, p = .021. Of primary interest was the main effect for placement direction, which was not significant, F(1, 62) = 0.108, p = .744. No significant interaction was observed, F(1, 62) = 0.002, p = .964.


Asunto(s)
Mano/fisiología , Pruebas Neuropsicológicas/estadística & datos numéricos , Desempeño Psicomotor/fisiología , Adolescente , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores Sexuales , Adulto Joven
8.
Environ Microbiol Rep ; 6(2): 159-66, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24596289

RESUMEN

Subaerial explosive volcanism contributes substantial amounts of material to the oceans, but little is known about the impact of volcanic ash on sedimentary microbial activity. We have studied anammox communities in deep sea sediments near the volcanically active island of Montserrat, Lesser Antilles. The rates of anammox and denitrification in the sediments were measured using (15)N isotope pairing incubation experiments, while 16S rRNA genes were used to examine anammox community structures. The higher anammox rates were measured in sediment containing the lower accumulation of volcanic ash in the surface sediments, while the lowest activities were found in sediments with the highest ash deposit. 16S rRNA gene analysis revealed the presence of 'Candidatus Scalindua spp.' in the sediments. The lowest diversity of anammox bacteria was observed in the sediments with the highest ash deposit. Overall, this study demonstrates that the deposition of volcanic material in deep sea sediments has negative impacts on activity and diversity of the anammox community. Since anammox may account for up to 79% of N2 production in marine ecosystems, periods of extensive explosive volcanism in Earth history may have had a hitherto unrecognized negative impact on the sedimentary nitrogen removal processes.


Asunto(s)
Compuestos de Amonio/metabolismo , Bacterias/metabolismo , Ecosistema , Sedimentos Geológicos/microbiología , Erupciones Volcánicas/análisis , Bacterias/clasificación , Bacterias/genética , Bacterias/aislamiento & purificación , Biodiversidad , Desnitrificación , Sedimentos Geológicos/química , Datos de Secuencia Molecular , Nitrógeno/metabolismo , Oxidación-Reducción , Filogenia , Agua de Mar/microbiología
9.
Nat Commun ; 4: 2143, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23868399

RESUMEN

Oceanic iron inputs must be traced and quantified to learn how they affect primary productivity and climate. Chemical reduction of iron in continental margin sediments provides a substantial dissolved flux to the oceans, which is isotopically lighter than the crust, and so may be distinguished in seawater from other sources, such as wind-blown dust. However, heavy iron isotopes measured in seawater have recently led to the proposition of another source of dissolved iron from 'non-reductive' dissolution of continental margins. Here we present the first pore water iron isotope data from a passive-tectonic and semi-arid ocean margin (South Africa), which reveals a smaller and isotopically heavier flux of dissolved iron to seawater than active-tectonic and dysoxic continental margins. These data provide in situ evidence of non-reductive iron dissolution from a continental margin, and further show that geological and hydro-climatic factors may affect the amount and isotopic composition of iron entering the ocean.


Asunto(s)
Sedimentos Geológicos/química , Hierro/análisis , Agua de Mar/química , Atmósfera/química , Clima , Hierro/química , Isótopos de Hierro , Océanos y Mares , Solubilidad , Sudáfrica , Viento
10.
PLoS One ; 8(1): e54686, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23359806

RESUMEN

In the austral summer of 2011 we undertook an investigation of three volcanic highs in the Central Bransfield Basin, Antarctica, in search of hydrothermal activity and associated fauna to assess changes since previous surveys and to evaluate the extent of hydrothermalism in this basin. At Hook Ridge, a submarine volcanic edifice at the eastern end of the basin, anomalies in water column redox potential (E(h)) were detected close to the seafloor, unaccompanied by temperature or turbidity anomalies, indicating low-temperature hydrothermal discharge. Seepage was manifested as shimmering water emanating from the sediment and from mineralised structures on the seafloor; recognisable vent endemic fauna were not observed. Pore fluids extracted from Hook Ridge sediment were depleted in chloride, sulfate and magnesium by up to 8% relative to seawater, enriched in lithium, boron and calcium, and had a distinct strontium isotope composition ((87)Sr/(86)Sr = 0.708776 at core base) compared with modern seawater ((87)Sr/(86)Sr ≈ 0.70918), indicating advection of hydrothermal fluid through sediment at this site. Biogeochemical zonation of redox active species implies significant moderation of the hydrothermal fluid with in situ diagenetic processes. At Middle Sister, the central ridge of the Three Sisters complex located about 100 km southwest of Hook Ridge, small water column E(h) anomalies were detected but visual observations of the seafloor and pore fluid profiles provided no evidence of active hydrothermal circulation. At The Axe, located about 50 km southwest of Three Sisters, no water column anomalies in E(h), temperature or turbidity were detected. These observations demonstrate that the temperature anomalies observed in previous surveys are episodic features, and suggest that hydrothermal circulation in the Bransfield Strait is ephemeral in nature and therefore may not support vent biota.


Asunto(s)
Sedimentos Geológicos , Respiraderos Hidrotermales , Regiones Antárticas , Modelos Teóricos , Oxidación-Reducción
11.
PLoS Biol ; 10(1): e1001234, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22235194

RESUMEN

Since the first discovery of deep-sea hydrothermal vents along the Galápagos Rift in 1977, numerous vent sites and endemic faunal assemblages have been found along mid-ocean ridges and back-arc basins at low to mid latitudes. These discoveries have suggested the existence of separate biogeographic provinces in the Atlantic and the North West Pacific, the existence of a province including the South West Pacific and Indian Ocean, and a separation of the North East Pacific, North East Pacific Rise, and South East Pacific Rise. The Southern Ocean is known to be a region of high deep-sea species diversity and centre of origin for the global deep-sea fauna. It has also been proposed as a gateway connecting hydrothermal vents in different oceans but is little explored because of extreme conditions. Since 2009 we have explored two segments of the East Scotia Ridge (ESR) in the Southern Ocean using a remotely operated vehicle. In each segment we located deep-sea hydrothermal vents hosting high-temperature black smokers up to 382.8°C and diffuse venting. The chemosynthetic ecosystems hosted by these vents are dominated by a new yeti crab (Kiwa n. sp.), stalked barnacles, limpets, peltospiroid gastropods, anemones, and a predatory sea star. Taxa abundant in vent ecosystems in other oceans, including polychaete worms (Siboglinidae), bathymodiolid mussels, and alvinocaridid shrimps, are absent from the ESR vents. These groups, except the Siboglinidae, possess planktotrophic larvae, rare in Antarctic marine invertebrates, suggesting that the environmental conditions of the Southern Ocean may act as a dispersal filter for vent taxa. Evidence from the distinctive fauna, the unique community structure, and multivariate analyses suggest that the Antarctic vent ecosystems represent a new vent biogeographic province. However, multivariate analyses of species present at the ESR and at other deep-sea hydrothermal vents globally indicate that vent biogeography is more complex than previously recognised.


Asunto(s)
Biodiversidad , Ecosistema , Respiraderos Hidrotermales , Agua de Mar/química , Animales , Regiones Antárticas , Bacterias/clasificación , Bacterias/genética , Bacterias/crecimiento & desarrollo , Crustáceos/clasificación , Crustáceos/genética , Crustáceos/crecimiento & desarrollo , Decápodos/clasificación , Decápodos/genética , Decápodos/crecimiento & desarrollo , Complejo IV de Transporte de Electrones/genética , Gastrópodos/clasificación , Gastrópodos/genética , Gastrópodos/crecimiento & desarrollo , Geografía , Sulfuro de Hidrógeno/metabolismo , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Océanos y Mares , Filogenia , ARN Ribosómico 16S/genética , ARN Ribosómico 18S/genética , ARN Ribosómico 28S/genética , Agua de Mar/microbiología , Análisis de Secuencia de ADN , Sodio/metabolismo , Especificidad de la Especie , Temperatura
13.
ISME J ; 4(9): 1193-205, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20410934

RESUMEN

A microbial community showing diverse respiratory processes was identified within an arsenic-rich, ferruginous shallow marine hydrothermal sediment (20-40 degrees C, pH 6.0-6.3) in Santorini, Greece. Analyses showed that ferric iron reduction with depth was broadly accompanied by manganese and arsenic reduction and FeS accumulation. Clone library analyses indicated the suboxic-anoxic transition zone sediment contained abundant Fe(III)- and sulfate-reducing Deltaproteobacteria, whereas the overlying surface sediment was dominated by clones related to the Fe(II)-oxidizing zetaproteobacterium, Mariprofundus ferroxydans. Cultures obtained from the transition zone were enriched in bacteria that reduced Fe(III), nitrate, sulfate and As(V) using acetate or lactate as electron donors. In the absence of added organic carbon, bacteria were enriched that oxidized Fe(II) anaerobically or microaerobically, sulfide microaerobically and aerobically and As(III) aerobically. According to 16S rRNA gene analyses, enriched bacteria represented a phylogenetically wide distribution. Most probable number counts indicated an abundance of nitrate-, As(V)- and Fe(III)((s,aq))-reducers, and dissolved sulfide-oxidizers over sulfate-reducers, and FeS-, As(III)- and nitrate-dependent Fe(II)-oxidisers in the transition zone. It is noteworthy that the combined community and geochemical data imply near-surface microbial iron and arsenic redox cycling were dominant biogeochemical processes.


Asunto(s)
Bacterias/aislamiento & purificación , Bacterias/metabolismo , Biodiversidad , Manantiales de Aguas Termales/microbiología , Hierro/metabolismo , Acetatos/metabolismo , Anaerobiosis , Arsénico/metabolismo , Bacterias/clasificación , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Grecia , Ácido Láctico/metabolismo , Manganeso/metabolismo , Metagenoma , Datos de Secuencia Molecular , Nitratos/metabolismo , Oxidación-Reducción , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Sulfatos/metabolismo
14.
Nature ; 457(7229): 577-80, 2009 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-19177128

RESUMEN

The addition of iron to high-nutrient, low-chlorophyll regions induces phytoplankton blooms that take up carbon. Carbon export from the surface layer and, in particular, the ability of the ocean and sediments to sequester carbon for many years remains, however, poorly quantified. Here we report data from the CROZEX experiment in the Southern Ocean, which was conducted to test the hypothesis that the observed north-south gradient in phytoplankton concentrations in the vicinity of the Crozet Islands is induced by natural iron fertilization that results in enhanced organic carbon flux to the deep ocean. We report annual particulate carbon fluxes out of the surface layer, at three kilometres below the ocean surface and to the ocean floor. We find that carbon fluxes from a highly productive, naturally iron-fertilized region of the sub-Antarctic Southern Ocean are two to three times larger than the carbon fluxes from an adjacent high-nutrient, low-chlorophyll area not fertilized by iron. Our findings support the hypothesis that increased iron supply to the glacial sub-Antarctic may have directly enhanced carbon export to the deep ocean. The CROZEX sequestration efficiency (the amount of carbon sequestered below the depth of winter mixing for a given iron supply) of 8,600 mol mol(-1) was 18 times greater than that of a phytoplankton bloom induced artificially by adding iron, but 77 times smaller than that of another bloom initiated, like CROZEX, by a natural supply of iron. Large losses of purposefully added iron can explain the lower efficiency of the induced bloom(6). The discrepancy between the blooms naturally supplied with iron may result in part from an underestimate of horizontal iron supply.


Asunto(s)
Carbono/metabolismo , Hierro/metabolismo , Agua de Mar/química , Regiones Antárticas , Clorofila/análisis , Clorofila/metabolismo , Clorofila A , Eutrofización , Geografía , Sedimentos Geológicos/química , Océanos y Mares , Fitoplancton/metabolismo , Estaciones del Año , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...