Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(28): e2220111120, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37399381

RESUMEN

The seasonal availability of light and micronutrients strongly regulates productivity in the Southern Ocean, restricting biological utilization of macronutrients and CO2 drawdown. Mineral dust flux is a key conduit for micronutrients to the Southern Ocean and a critical mediator of multimillennial-scale atmospheric CO2 oscillations. While the role of dust-borne iron (Fe) in Southern Ocean biogeochemistry has been examined in detail, manganese (Mn) availability is also emerging as a potential driver of past, present, and future Southern Ocean biogeochemistry. Here, we present results from fifteen bioassay experiments along a north-south transect in the undersampled eastern Pacific sub-Antarctic zone. In addition to widespread Fe limitation of phytoplankton photochemical efficiency, we found further responses following the addition of Mn at our southerly stations, supporting the importance of Fe-Mn co-limitation in the Southern Ocean. Moreover, addition of different Patagonian dusts resulted in enhanced photochemical efficiency with differential responses linked to source region dust characteristics in terms of relative Fe/Mn solubility. Changes in the relative magnitude of dust deposition, combined with source region mineralogy, could hence determine whether Fe or Mn limitation control Southern Ocean productivity under future as well as past climate states.

2.
Glob Chang Biol ; 26(10): 5574-5587, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32506810

RESUMEN

Continental margins are disproportionally important for global primary production, fisheries and CO2 uptake. However, across the Northeast Atlantic shelves, there has been an ongoing summertime decline of key biota-large diatoms, dinoflagellates and copepods-that traditionally fuel higher tropic levels such as fish, sea birds and marine mammals. Here, we combine multiple time series with in situ process studies to link these declines to summer nutrient stress and increasing proportions of picophytoplankton that can comprise up to 90% of the combined pico- and nanophytoplankton biomass in coastal areas. Among the pico-fraction, it is the cyanobacterium Synechococcus that flourishes when iron and nitrogen resupply to surface waters are diminished. Our field data show how traits beyond small size give Synechococcus a competitive edge over pico- and nanoeukaryotes. Key is their ability to grow at low irradiances near the nutricline, which is aided by their superior light-harvesting system and high affinity to iron. However, minute size and lack of essential biomolecules (e.g. omega-3 polyunsaturated fatty acids and sterols) render Synechococcus poor primary producers to sustain shelf sea food webs efficiently. The combination of earlier spring blooms and lower summer food quantity and quality creates an increasing period of suboptimal feeding conditions for zooplankton at a time of year when their metabolic demand is highest. We suggest that this nutrition-related mismatch has contributed to the widespread, ~50% decline in summer copepod abundance we observe over the last 60 years. With Synechococcus clades being prominent from the tropics to the Arctic and their abundances increasing worldwide, our study informs projections of future food web dynamics in coastal and shelf areas where droughts and stratification lead to increasing nutrient starvation of surface waters.


Asunto(s)
Diatomeas , Cadena Alimentaria , Animales , Regiones Árticas , Biomasa , Zooplancton
3.
Nat Commun ; 10(1): 4960, 2019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31673108

RESUMEN

Despite recent advances in observational data coverage, quantitative constraints on how different physical and biogeochemical processes shape dissolved iron distributions remain elusive, lowering confidence in future projections for iron-limited regions. Here we show that dissolved iron is cycled rapidly in Pacific mode and intermediate water and accumulates at a rate controlled by the strongly opposing fluxes of regeneration and scavenging. Combining new data sets within a watermass framework shows that the multidecadal dissolved iron accumulation is much lower than expected from a meta-analysis of iron regeneration fluxes. This mismatch can only be reconciled by invoking significant rates of iron removal  to balance iron regeneration, which imply generation of authigenic particulate iron pools. Consequently, rapid internal cycling of iron, rather than its physical transport, is the main control on observed iron stocks within intermediate waters globally and upper ocean iron limitation will be strongly sensitive to subtle changes to the internal cycling balance.

4.
Global Biogeochem Cycles ; 32(4): 594-616, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29937626

RESUMEN

Cobalt is an important micronutrient for ocean microbes as it is present in vitamin B12 and is a co-factor in various metalloenzymes that catalyze cellular processes. Moreover, when seawater availability of cobalt is compared to biological demands, cobalt emerges as being depleted in seawater, pointing to a potentially important limiting role. To properly account for the potential biological role for cobalt, there is therefore a need to understand the processes driving the biogeochemical cycling of cobalt and, in particular, the balance between external inputs and internal cycling. To do so, we developed the first cobalt model within a state-of-the-art three-dimensional global ocean biogeochemical model. Overall, our model does a good job in reproducing measurements with a correlation coefficient of >0.7 in the surface and >0.5 at depth. We find that continental margins are the dominant source of cobalt, with a crucial role played by supply under low bottom-water oxygen conditions. The basin-scale distribution of cobalt supplied from margins is facilitated by the activity of manganese-oxidizing bacteria being suppressed under low oxygen and low temperatures, which extends the residence time of cobalt. Overall, we find a residence time of 7 and 250 years in the upper 250 m and global ocean, respectively. Importantly, we find that the dominant internal resupply process switches from regeneration and recycling of particulate cobalt to dissolution of scavenged cobalt between the upper ocean and the ocean interior. Our model highlights key regions of the ocean where biological activity may be most sensitive to cobalt availability.

5.
Nat Commun ; 7: 12921, 2016 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-27678297

RESUMEN

Anthropogenic emissions completely overwhelmed natural marine lead (Pb) sources during the past century, predominantly due to leaded petrol usage. Here, based on Pb isotope measurements, we reassess the importance of natural and anthropogenic Pb sources to the tropical North Atlantic following the nearly complete global cessation of leaded petrol use. Significant proportions of up to 30-50% of natural Pb, derived from mineral dust, are observed in Atlantic surface waters, reflecting the success of the global effort to reduce anthropogenic Pb emissions. The observation of mineral dust derived Pb in surface waters is governed by the elevated atmospheric mineral dust concentration of the North African dust plume and the dominance of dry deposition for the atmospheric aerosol flux to surface waters. Given these specific regional conditions, emissions from anthropogenic activities will remain the dominant global marine Pb source, even in the absence of leaded petrol combustion.

6.
Philos Trans A Math Phys Eng Sci ; 374(2081)2016 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-29035267

RESUMEN

Continental shelves and shelf seas play a central role in the global carbon cycle. However, their importance with respect to trace element and isotope (TEI) inputs to ocean basins is less well understood. Here, we present major findings on shelf TEI biogeochemistry from the GEOTRACES programme as well as a proof of concept for a new method to estimate shelf TEI fluxes. The case studies focus on advances in our understanding of TEI cycling in the Arctic, transformations within a major river estuary (Amazon), shelf sediment micronutrient fluxes and basin-scale estimates of submarine groundwater discharge. The proposed shelf flux tracer is 228-radium (T1/2 = 5.75 yr), which is continuously supplied to the shelf from coastal aquifers, sediment porewater exchange and rivers. Model-derived shelf 228Ra fluxes are combined with TEI/ 228Ra ratios to quantify ocean TEI fluxes from the western North Atlantic margin. The results from this new approach agree well with previous estimates for shelf Co, Fe, Mn and Zn inputs and exceed published estimates of atmospheric deposition by factors of approximately 3-23. Lastly, recommendations are made for additional GEOTRACES process studies and coastal margin-focused section cruises that will help refine the model and provide better insight on the mechanisms driving shelf-derived TEI fluxes to the ocean.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.

7.
Talanta ; 133: 162-9, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25435243

RESUMEN

A flow injection manifold incorporating a solid phase chelating resin (Toyopearl AF-Chelate-650) is reported for the preconcentration of dissolved metals from seawater, with a focus on investigating the effect of the loading pH, wash solution composition and wash time. Cobalt, iron, lead and vanadium have been used as target analytes with contrasting oceanographic behaviour. Quadrupole ICP-MS has been used for detection to make the approach accessible to most laboratories and a collision/reaction cell has been incorporated to minimise polyatomic interferences. Results for the seawater CRM NASS-6 and two GEOTRACES reference materials were in good agreement with the certified/consensus values, demonstrating the suitability of the approach for the determination of trace metals in seawater. The experimental design used allowed a thorough investigation of the uncertainty contribution from each method parameter to the overall expanded uncertainty of the measurement. The results showed that the parameters making the largest contributions were the precision of the peak area measurement and the uncertainty associated with the slope of the calibration curve. Therefore, these are the critical parameters that should be targeted in order to reduce the overall measurement uncertainty. For iron, the wash blank also gave a measureable contribution.


Asunto(s)
Espectrometría de Masas/instrumentación , Metales Pesados/análisis , Agua de Mar/química , Extracción en Fase Sólida/instrumentación , Cobalto/análisis , Análisis de Inyección de Flujo/instrumentación , Hierro/análisis , Plomo/análisis , Límite de Detección , Incertidumbre , Vanadio/análisis
8.
Proc Natl Acad Sci U S A ; 112(1): E15-20, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25535372

RESUMEN

The supply and bioavailability of dissolved iron sets the magnitude of surface productivity for ∼ 40% of the global ocean. The redox state, organic complexation, and phase (dissolved versus particulate) of iron are key determinants of iron bioavailability in the marine realm, although the mechanisms facilitating exchange between iron species (inorganic and organic) and phases are poorly constrained. Here we use the isotope fingerprint of dissolved and particulate iron to reveal distinct isotopic signatures for biological uptake of iron during a GEOTRACES process study focused on a temperate spring phytoplankton bloom in subtropical waters. At the onset of the bloom, dissolved iron within the mixed layer was isotopically light relative to particulate iron. The isotopically light dissolved iron pool likely results from the reduction of particulate iron via photochemical and (to a lesser extent) biologically mediated reduction processes. As the bloom develops, dissolved iron within the surface mixed layer becomes isotopically heavy, reflecting the dominance of biological processing of iron as it is removed from solution, while scavenging appears to play a minor role. As stable isotopes have shown for major elements like nitrogen, iron isotopes offer a new window into our understanding of the biogeochemical cycling of iron, thereby allowing us to disentangle a suite of concurrent biotic and abiotic transformations of this key biolimiting element.


Asunto(s)
Ecosistema , Hierro/análisis , Marcaje Isotópico , Fitoplancton/crecimiento & desarrollo , Clima Tropical , Fraccionamiento Químico , Precipitación Química , Clorofila/análisis , Isótopos de Hierro , Material Particulado/análisis , Comunicaciones por Satélite
9.
Anal Chim Acta ; 665(2): 200-7, 2010 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-20417331

RESUMEN

A novel method, combining isotope dilution with standard additions, was developed for the analysis of eight elements (Mn, Fe, Co, Ni, Cu, Zn, Cd and Pb) in seawater. The method requires just 12 mL of sample and employs an off-line pre-concentration step using the commercially available chelating resin Toyopearl AF-Chelate-650M prior to determination by high resolution inductively coupled plasma magnetic sector mass spectrometry (ICP-MS). Acidified samples were spiked with a multi-element standard of six isotopes ((57)Fe, (62)Ni, (65)Cu, (68)Zn, (111)Cd and (207)Pb) enriched over natural abundance. In addition, standard additions of a mixed Co and Mn standard were performed on sub-sets of the same sample. All samples were irradiated using a low power (119 mW cm(-2); 254 nm) UV system, to destroy organic ligands, before pre-concentration and extraction from the seawater matrix. Ammonium acetate was used to raise the pH of the 12 mL sub-samples (off-line) to pH 6.4+/-0.2 prior to loading onto the chelating resin. The extracted metals were eluted using 1.0 M Q-HNO(3) and determined using ICP-MS. The method was verified through the analysis of certified reference material (NASS-5) and the SAFe inter-comparison samples (S1 and D2), the results of which are in good agreement with the certified and reported consensus values. We also present vertical profiles of the eight metals taken from the Bermuda Atlantic Time Series (BATS) station collected during the GEOTRACES inter-comparison cruise in June 2008.


Asunto(s)
Espectrometría de Masas/métodos , Metales/análisis , Agua de Mar/química , Cadmio/análisis , Cobalto/análisis , Cobre/análisis , Concentración de Iones de Hidrógeno , Hierro/análisis , Marcaje Isotópico , Plomo/análisis , Magnetismo , Manganeso/análisis , Metales/química , Níquel/análisis , Zinc/análisis
10.
Anal Chim Acta ; 652(1-2): 259-65, 2009 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-19786190

RESUMEN

A detailed investigation into the performance of two flow injection-chemiluminescence (FI-CL) manifolds (with and without a preconcentration column) for the determination of sub-nanomolar dissolved iron (Fe(II)+Fe(III)), following the reduction of Fe(III) by sulphite, in seawater is described. Kinetic experiments were conducted to examine the efficiency of reduction of inorganic Fe(III) with sulphite under different conditions and a rigorous study of the potential interference caused by other transition metals present in seawater was conducted. Using 100microM concentrations of sulphite a reduction time of 4h was sufficient to quantitatively reduce Fe(III) in seawater. Under optimal conditions, cobalt(II) and vanadium(IV)/(III) were the major positive interferences and strategies for their removal are reported. Specifically, cobalt(II) was masked by the addition of dimethylglyoxime to the luminol solution and vanadium(IV) was removed by passing the sample through an 8-hydroxyquinoline column in a low pH carrier stream. Manganese(II) also interfered by suppression of the CL response but this was not significant at typical open ocean concentrations.


Asunto(s)
Compuestos Férricos/análisis , Análisis de Inyección de Flujo/métodos , Mediciones Luminiscentes/métodos , Luminol/química , Metales/química , Agua de Mar/química , Compuestos Ferrosos/análisis , Análisis de Inyección de Flujo/instrumentación , Sulfitos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...