Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(17): e2209615120, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37068242

RESUMEN

The first records of Greenland Vikings date to 985 CE. Archaeological evidence yields insight into how Vikings lived, yet drivers of their disappearance in the 15th century remain enigmatic. Research suggests a combination of environmental and socioeconomic factors, and the climatic shift from the Medieval Warm Period (~900 to 1250 CE) to the Little Ice Age (~1250 to 1900 CE) may have forced them to abandon Greenland. Glacial geomorphology and paleoclimate research suggest that the Southern Greenland Ice Sheet readvanced during Viking occupation, peaking in the Little Ice Age. Counterintuitively, the readvance caused sea-level rise near the ice margin due to increased gravitational attraction toward the ice sheet and crustal subsidence. We estimate ice growth in Southwestern Greenland using geomorphological indicators and lake core data from previous literature. We calculate the effect of ice growth on regional sea level by applying our ice history to a geophysical model of sea level with a resolution of ~1 km across Southwestern Greenland and compare the results to archaeological evidence. The results indicate that sea level rose up to ~3.3 m outside the glaciation zone during Viking settlement, producing shoreline retreat of hundreds of meters. Sea-level rise was progressive and encompassed the entire Eastern Settlement. Moreover, pervasive flooding would have forced abandonment of many coastal sites. These processes likely contributed to the suite of vulnerabilities that led to Viking abandonment of Greenland. Sea-level change thus represents an integral, missing element of the Viking story.

2.
Proc Natl Acad Sci U S A ; 119(14): e2118558119, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35312340

RESUMEN

SignificanceThe Ice-Free Corridor (IFC) has long played a key role in hypotheses about the peopling of the Americas. Earlier assessments of its age suggested that the IFC was available for a Clovis-first migration, but subsequent developments now suggest a pre-Clovis occupation of the Americas that occurred before the opening of the IFC, thus supporting a Pacific coastal migration route instead. However, large uncertainties in existing ages from the IFC cannot preclude its availability as a route for the first migrations. Resolving this debate over migration route is important for addressing the questions of when and how the first Americans arrived. We report cosmogenic nuclide exposure ages that show that the final opening of the IFC occurred well after pre-Clovis occupation.


Asunto(s)
Arqueología , Américas , Humanos
3.
Sci Rep ; 9(1): 11907, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31417111

RESUMEN

Extinction models generally predict that coastal and neritic fauna benefit during sea-level rise (transgression), whereas sea-level retreat (regression) diminishes their suitable habitat area and promotes evolutionary bottlenecks. Sea-level change also impacts terrestrial island biogeography, but it remains a challenge to evidence how sea-level rise impacts aquatic island biogeography, especially in the subterranean realm. Karst subterranean estuaries (KSEs) occur globally on carbonate islands and platforms, and they are populated by globally-dispersed, ancient ecosystems (termed anchialine). Anchialine fauna currently exhibit a disjunct biogeography that cannot be completely explained by plate tectonic-imposed vicariance. Here we provide evidence that anchialine ecosystems can experience evolutionary bottlenecks caused by habitat reduction during transgression events. Marine-adapted anchialine fauna benefit from habitat expansion during transgressions, but fresh- and brackish-adapted fauna must emigrate, evolve to accommodate local habitat changes, or are regionally eliminated. Phanerozoic transgressions relative to long-term changes in subsidence and relief of regional lithology must be considered for explaining biogeography, evolution, local extirpation or complete extinction of anchialine fauna. Despite the omission of this entire category of environments and animals in climate change risk assessments, the results indicate that anchialine fauna on low-lying islands and platforms that depend upon meteoric groundwater are vulnerable to habitat changes caused by 21st century sea-level rise.

4.
Proc Natl Acad Sci U S A ; 114(23): 5952-5957, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28512225

RESUMEN

We present a revised and extended high Arctic air temperature reconstruction from a single proxy that spans the past ∼12,000 y (up to 2009 CE). Our reconstruction from the Agassiz ice cap (Ellesmere Island, Canada) indicates an earlier and warmer Holocene thermal maximum with early Holocene temperatures that are 4-5 °C warmer compared with a previous reconstruction, and regularly exceed contemporary values for a period of ∼3,000 y. Our results show that air temperatures in this region are now at their warmest in the past 6,800-7,800 y, and that the recent rate of temperature change is unprecedented over the entire Holocene. The warmer early Holocene inferred from the Agassiz ice core leads to an estimated ∼1 km of ice thinning in northwest Greenland during the early Holocene using the Camp Century ice core. Ice modeling results show that this large thinning is consistent with our air temperature reconstruction. The modeling results also demonstrate the broader significance of the enhanced warming, with a retreat of the northern ice margin behind its present position in the mid Holocene and a ∼25% increase in total Greenland ice sheet mass loss (∼1.4 m sea-level equivalent) during the last deglaciation, both of which have implications for interpreting geodetic measurements of land uplift and gravity changes in northern Greenland.

6.
Proc Natl Acad Sci U S A ; 110(34): 13745-50, 2013 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-23858443

RESUMEN

Global mean sea level has been steadily rising over the last century, is projected to increase by the end of this century, and will continue to rise beyond the year 2100 unless the current global mean temperature trend is reversed. Inertia in the climate and global carbon system, however, causes the global mean temperature to decline slowly even after greenhouse gas emissions have ceased, raising the question of how much sea-level commitment is expected for different levels of global mean temperature increase above preindustrial levels. Although sea-level rise over the last century has been dominated by ocean warming and loss of glaciers, the sensitivity suggested from records of past sea levels indicates important contributions should also be expected from the Greenland and Antarctic Ice Sheets. Uncertainties in the paleo-reconstructions, however, necessitate additional strategies to better constrain the sea-level commitment. Here we combine paleo-evidence with simulations from physical models to estimate the future sea-level commitment on a multimillennial time scale and compute associated regional sea-level patterns. Oceanic thermal expansion and the Antarctic Ice Sheet contribute quasi-linearly, with 0.4 m °C(-1) and 1.2 m °C(-1) of warming, respectively. The saturation of the contribution from glaciers is overcompensated by the nonlinear response of the Greenland Ice Sheet. As a consequence we are committed to a sea-level rise of approximately 2.3 m °C(-1) within the next 2,000 y. Considering the lifetime of anthropogenic greenhouse gases, this imposes the need for fundamental adaptation strategies on multicentennial time scales.


Asunto(s)
Calentamiento Global , Cubierta de Hielo , Modelos Teóricos , Regiones Antárticas , Simulación por Computador , Groenlandia , Océanos y Mares , Agua de Mar/química , Temperatura
7.
Nature ; 491(7425): 586-9, 2012 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-23086145

RESUMEN

Recent estimates of Antarctica's present-day rate of ice-mass contribution to changes in sea level range from 31 gigatonnes a year (Gt yr(-1); ref. 1) to 246 Gt yr(-1) (ref. 2), a range that cannot be reconciled within formal errors. Time-varying rates of mass loss contribute to this, but substantial technique-specific systematic errors also exist. In particular, estimates of secular ice-mass change derived from Gravity Recovery and Climate Experiment (GRACE) satellite data are dominated by significant uncertainty in the accuracy of models of mass change due to glacial isostatic adjustment (GIA). Here we adopt a new model of GIA, developed from geological constraints, which produces GIA rates systematically lower than those of previous models, and an improved fit to independent uplift data. After applying the model to 99 months (from August 2002 to December 2010) of GRACE data, we estimate a continent-wide ice-mass change of -69 ± 18 Gt yr(-1) (+0.19 ± 0.05 mm yr(-1) sea-level equivalent). This is about a third to a half of the most recently published GRACE estimates, which cover a similar time period but are based on older GIA models. Plausible GIA model uncertainties, and errors relating to removing longitudinal GRACE artefacts ('destriping'), confine our estimate to the range -126 Gt yr(-1) to -29 Gt yr(-1) (0.08-0.35 mm yr(-1) sea-level equivalent). We resolve 26 independent drainage basins and find that Antarctic mass loss, and its acceleration, is concentrated in basins along the Amundsen Sea coast. Outside this region, we find that West Antarctica is nearly in balance and that East Antarctica is gaining substantial mass.


Asunto(s)
Gravitación , Cubierta de Hielo , Modelos Teóricos , Comunicaciones por Satélite , Agua de Mar/análisis , Regiones Antárticas , Artefactos , Congelación , Océanos y Mares , Proyectos de Investigación , Factores de Tiempo , Incertidumbre
8.
PLoS One ; 6(7): e22376, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21811594

RESUMEN

BACKGROUND: The Intergovernmental Panel on Climate Change (IPCC) provides a conservative estimate on rates of sea-level rise of 3.8 mm yr(-1) at the end of the 21(st) century, which may have a detrimental effect on ecologically important mangrove ecosystems. Understanding factors influencing the long-term resilience of these communities is critical but poorly understood. We investigate ecological resilience in a coastal mangrove community from the Galápagos Islands over the last 2700 years using three research questions: What are the 'fast and slow' processes operating in the coastal zone? Is there evidence for a threshold response? How can the past inform us about the resilience of the modern system? METHODOLOGY/PRINCIPAL FINDINGS: Palaeoecological methods (AMS radiocarbon dating, stable carbon isotopes (δ(13)C)) were used to reconstruct sedimentation rates and ecological change over the past 2,700 years at Diablas lagoon, Isabela, Galápagos. Bulk geochemical analysis was also used to determine local environmental changes, and salinity was reconstructed using a diatom transfer function. Changes in relative sea level (RSL) were estimated using a glacio-isostatic adjustment model. Non-linear behaviour was observed in the Diablas mangrove ecosystem as it responded to increased salinities following exposure to tidal inundations. A negative feedback was observed which enabled the mangrove canopy to accrete vertically, but disturbances may have opened up the canopy and contributed to an erosion of resilience over time. A combination of drier climatic conditions and a slight fall in RSL then resulted in a threshold response, from a mangrove community to a microbial mat. CONCLUSIONS/SIGNIFICANCE: Palaeoecological records can provide important information on the nature of non-linear behaviour by identifying thresholds within ecological systems, and in outlining responses to 'fast' and 'slow' environmental change between alternative stable states. This study highlights the need to incorporate a long-term ecological perspective when designing strategies for maximizing coastal resilience.


Asunto(s)
Ecosistema , Calibración , Isótopos de Carbono , Ecuador , Geografía , Marcaje Isotópico , Espectrometría de Masas , Modelos Biológicos , Océanos y Mares , Salinidad , Espectrofotometría Atómica
9.
Science ; 328(5983): 1262-6, 2010 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-20430972

RESUMEN

Paleoclimate proxy records reveal a pervasive cooling event with a Northern Hemispheric extent approximately 9300 years ago. Coeval changes in the oceanic circulation of the North Atlantic imply freshwater forcing. However, the source, magnitude, and routing of meltwater have remained unknown. Located in central North America, Lake Superior is a key site for regulating the outflow of glacial meltwater to the oceans. Here, we show evidence for an approximately 45-meter rapid lake-level fall in this basin, centered on 9300 calibrated years before the present, due to the failure of a glacial drift dam on the southeast corner of the lake. We ascribe the widespread climate anomaly approximately 9300 years ago to this freshwater outburst delivered to the North Atlantic Ocean through the Lake Huron-North Bay-Ottawa River-St. Lawrence River valleys.

10.
Science ; 309(5736): 925-8, 2005 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-15976270

RESUMEN

Previous predictions of sea-level change subsequent to the last glacial maximum show significant, systematic discrepancies between observations at Tahiti, Huon Peninsula, and Sunda Shelf during Lateglacial time (approximately 14,000 to 9000 calibrated years before the present). We demonstrate that a model of glacial isostatic adjustment characterized by both a high-viscosity lower mantle (4 x 10(22) Pa s) and a large contribution from the Antarctic ice sheet to meltwater pulse IA (approximately 15-meters eustatic equivalent) resolves these discrepancies. This result supports arguments that an early and rapid Antarctic deglaciation contributed to a sequence of climatic events that ended the most recent glacial period of the current ice age.

11.
Nature ; 432(7016): 460, 2004 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-15565143

RESUMEN

Climate varied enormously over the most recent ice age--for example, large pulses of ice-rafted debris, originating mainly from the Labrador Sea, were deposited into the North Atlantic at roughly 7,000-year intervals, with global climatic implications. Here we show that ocean tides within the Labrador Sea were exceptionally large over the period spanning these huge, abrupt ice movements, which are known as Heinrich events. We propose that tides played a catalytic role in liberating iceberg armadas during that time.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...