Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 630(8017): 654-659, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38839965

RESUMEN

Emissions reduction and greenhouse gas removal from the atmosphere are both necessary to achieve net-zero emissions and limit climate change1. There is thus a need for improved sorbents for the capture of carbon dioxide from the atmosphere, a process known as direct air capture. In particular, low-cost materials that can be regenerated at low temperatures would overcome the limitations of current technologies. In this work, we introduce a new class of designer sorbent materials known as 'charged-sorbents'. These materials are prepared through a battery-like charging process that accumulates ions in the pores of low-cost activated carbons, with the inserted ions then serving as sites for carbon dioxide adsorption. We use our charging process to accumulate reactive hydroxide ions in the pores of a carbon electrode, and find that the resulting sorbent material can rapidly capture carbon dioxide from ambient air by means of (bi)carbonate formation. Unlike traditional bulk carbonates, charged-sorbent regeneration can be achieved at low temperatures (90-100 °C) and the sorbent's conductive nature permits direct Joule heating regeneration2,3 using renewable electricity. Given their highly tailorable pore environments and low cost, we anticipate that charged-sorbents will find numerous potential applications in chemical separations, catalysis and beyond.


Asunto(s)
Dióxido de Carbono , Dióxido de Carbono/análisis , Dióxido de Carbono/química , Dióxido de Carbono/aislamiento & purificación , Adsorción , Electrodos , Hidróxidos/química , Atmósfera/química , Carbonatos/química , Aire , Temperatura , Carbón Orgánico/química , Porosidad , Carbono/química
2.
ACS Mater Au ; 4(3): 258-273, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38737116

RESUMEN

Electroactive materials are central to myriad applications, including energy storage, sensing, and catalysis. Compared to traditional inorganic electrode materials, redox-active organic materials such as porous organic polymers (POPs) and covalent organic frameworks (COFs) are emerging as promising alternatives due to their structural tunability, flexibility, sustainability, and compatibility with a range of electrolytes. Herein, we discuss the challenges and opportunities available for the use of redox-active organic materials in organoelectrochemistry, an emerging area in fine chemical synthesis. In particular, we highlight the utility of organic electrode materials in photoredox catalysis, electrochemical energy storage, and electrocatalysis and point to new directions needed to unlock their potential utility for organic synthesis. This Perspective aims to bring together the organic, electrochemistry, and polymer communities to design new heterogeneous electrocatalysts for the sustainable synthesis of complex molecules.

3.
Chem Sci ; 15(16): 5964-5972, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38665542

RESUMEN

Perfluorocompound (PFC) gases play vital roles in microelectronics processing. Requirements for ultra-high purities traditionally necessitate use of virgin sources and thereby hinder the capture, purification, and reuse of these costly gases. Most importantly, gaseous PFCs are incredibly potent greenhouse gases with atmospheric lifetimes on the order of 103-104 years, and thus any environmental emissions have an outsized and prolonged impact on our climate. The development of sorbents that can capture PFC gases from industrial waste streams has lagged substantially behind the progress made over the last decade in capturing CO2 from both point emission sources and directly from air. Herein, we show that the metal-organic framework Zn(fba) (fba2- = 4,4'-(hexafluoroisopropylidene)bis-benzoate) displays an equilibrium selectivity for CF4 adsorption over N2 that surpasses those of all water-stable sorbents that have been reported for this separation. Selective adsorption of both CHF3 and CH4 over N2 is also evident, demonstrating a general preference for tetrahedral C1 gases. This selectivity is enabled by adsorption within narrow corrugated channels lined with ligand-based aryl rings, a site within this material that has not previously been realized as being accessible to guests. Analyses of adsorption kinetics and X-ray diffraction data are used to characterize sorption and diffusion of small adsorbates within these channels and strongly implicate rotation of the linker aryl rings as a gate that modulates transport of the C1 gases through a crystallite. Multi-component breakthrough measurements demonstrate that Zn(fba) is able to resolve mixtures of CF4 and N2 under flow-through conditions. Taken together, this work illuminates the dynamic structure of Zn(fba), and also points toward general design principles that can enable large CF4 selectivities in sorbents with more favorable kinetic profiles.

4.
J Am Chem Soc ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607314

RESUMEN

The selective halogenation of complex (hetero)aromatic systems is a critical yet challenging transformation that is relevant to medicinal chemistry, agriculture, and biomedical imaging. However, current methods are limited by toxic reagents, expensive homogeneous second- and third-row transition metal catalysts, or poor substrate tolerance. Herein, we demonstrate that porous metal-organic frameworks (MOFs) containing terminal Co(III) halide sites represent a rare and general class of heterogeneous catalysts for the controlled installation of chlorine and fluorine centers into electron-deficient (hetero)aryl bromides using simple metal halide salts. Mechanistic studies support that these halogen exchange (halex) reactions proceed via redox-neutral nucleophilic aromatic substitution (SNAr) at the Co(III) sites. The MOF-based halex catalysts are recyclable, enable green halogenation with minimal waste generation, and facilitate halex in a continuous flow. Our findings represent the first example of SNAr catalysis using MOFs, expanding the lexicon of synthetic transformations enabled by these materials.

5.
J Am Chem Soc ; 146(9): 6072-6083, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38400985

RESUMEN

Diamine-appended Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) metal-organic frameworks are promising candidates for carbon capture that exhibit exceptional selectivities and high capacities for CO2. To date, CO2 uptake in these materials has been shown to occur predominantly via a chemisorption mechanism involving CO2 insertion at the amine-appended metal sites, a mechanism that limits the capacity of the material to ∼1 equiv of CO2 per diamine. Herein, we report a new framework, pip2-Mg2(dobpdc) (pip2 = 1-(2-aminoethyl)piperidine), that exhibits two-step CO2 uptake and achieves an unusually high CO2 capacity approaching 1.5 CO2 per diamine at saturation. Analysis of variable-pressure CO2 uptake in the material using solid-state nuclear magnetic resonance (NMR) spectroscopy and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) reveals that pip2-Mg2(dobpdc) captures CO2 via an unprecedented mechanism involving the initial insertion of CO2 to form ammonium carbamate chains at half of the sites in the material, followed by tandem cooperative chemisorption and physisorption. Powder X-ray diffraction analysis, supported by van der Waals-corrected density functional theory, reveals that physisorbed CO2 occupies a pocket formed by adjacent ammonium carbamate chains and the linker. Based on breakthrough and extended cycling experiments, pip2-Mg2(dobpdc) exhibits exceptional performance for CO2 capture under conditions relevant to the separation of CO2 from landfill gas. More broadly, these results highlight new opportunities for the fundamental design of diamine-Mg2(dobpdc) materials with even higher capacities than those predicted based on CO2 chemisorption alone.

6.
Science ; 381(6665): 1455-1461, 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37769097

RESUMEN

Fluorine is an increasingly common substituent in pharmaceuticals and agrochemicals because it improves the bioavailability and metabolic stability of organic molecules. Fluorinated gases represent intuitive building blocks for the late-stage installation of fluorinated groups, but they are generally overlooked because they require the use of specialized equipment. We report a general strategy for handling fluorinated gases as benchtop-stable solid reagents using metal-organic frameworks (MOFs). Gas-MOF reagents are prepared on gram-scale and used to facilitate fluorovinylation and fluoroalkylation reactions. Encapsulation of gas-MOF reagents within wax enables stable storage on the benchtop and controlled release into solution upon sonication, which represents a safer alternative to handling the gas directly. Furthermore, our approach enables high-throughput reaction development with these gases.

7.
Artículo en Inglés | MEDLINE | ID: mdl-37581286

RESUMEN

Organic electrode materials are appealing candidates for a wide range of applications, including heterogeneous electrocatalysis and electrochemical energy storage. However, a narrow understanding of the structure-property relationships in these materials hinders the full realization of their potential. Herein, we investigate a family of insoluble perylenediimide (PDI) polymers to interrogate how backbone flexibility affects their thermodynamic and kinetic redox properties. We verify that the polymers generally access the highest percentage of redox-active groups with K+ ions (vs Na+ and Li+) due to its small solvation shell/energy and favorable soft-soft interactions with reduced PDI species. Through cyclic voltammetry, we show that increasing the polymer flexibility does not minimize barriers to ion-insertion processes but rather increases the level of diffusion-limited processes. Further, we propose that the condensation of imides to iminoimides can truncate the imide polymer chain growth for certain diamine monomers, leading to greater polymer solubilization and reduced cycling stability. Together, our results provide insight into how polymer flexibility, ion-electrode interactions, and polymerization side reactions dictate the redox properties of PDI polymers, paving the way for the development of next-generation organic electrode materials.

8.
Angew Chem Int Ed Engl ; 62(40): e202310246, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37559156

RESUMEN

Single-electron transfer (SET) plays a critical role in many chemical processes, from organic synthesis to environmental remediation. However, the selective reduction of inert substrates (Ep/2 <-2 V vs Fc/Fc+ ), such as ubiquitous electron-neutral and electron-rich (hetero)aryl chlorides, remains a major challenge. Current approaches largely rely on catalyst photoexcitation to reach the necessary deeply reducing potentials or suffer from limited substrate scopes. Herein, we demonstrate that cumulenes-organic molecules with multiple consecutive double bonds-can function as catalytic redox mediators for the electroreductive radical borylation of (hetero)aryl chlorides at relatively mild cathodic potentials (approximately -1.9 V vs. Ag/AgCl) without the need for photoirradiation. Electrochemical, spectroscopic, and computational studies support that step-wise electron transfer from reduced cumulenes to electron-neutral chloroarenes is followed by thermodynamically favorable mesolytic cleavage of the aryl radical anion to generate the desired aryl radical intermediate. Our findings will guide the development of other sustainable, purely electroreductive radical transformations of inert molecules using organic redox mediators.

9.
J Am Chem Soc ; 145(31): 17151-17163, 2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37493594

RESUMEN

Diamine-appended Mg2(dobpdc) (dobpdc4- = 4,4'-dioxidobiphenyl-3,3'-dicarboxylate) metal-organic frameworks have emerged as promising candidates for carbon capture owing to their exceptional CO2 selectivities, high separation capacities, and step-shaped adsorption profiles, which arise from a unique cooperative adsorption mechanism resulting in the formation of ammonium carbamate chains. Materials appended with primary,secondary-diamines featuring bulky substituents, in particular, exhibit excellent stabilities and CO2 adsorption properties. However, these frameworks display double-step adsorption behavior arising from steric repulsion between ammonium carbamates, which ultimately results in increased regeneration energies. Herein, we report frameworks of the type diamine-Mg2(olz) (olz4- = (E)-5,5'-(diazene-1,2-diyl)bis(2-oxidobenzoate)) that feature diverse diamines with bulky substituents and display desirable single-step CO2 adsorption across a wide range of pressures and temperatures. Analysis of CO2 adsorption data reveals that the basicity of the pore-dwelling amine─in addition to its steric bulk─is an important factor influencing adsorption step pressure; furthermore, the amine steric bulk is found to be inversely correlated with the degree of cooperativity in CO2 uptake. One material, ee-2-Mg2(olz) (ee-2 = N,N-diethylethylenediamine), adsorbs >90% of the CO2 from a simulated coal flue stream and exhibits exceptional thermal and oxidative stability over the course of extensive adsorption/desorption cycling, placing it among top-performing adsorbents to date for CO2 capture from a coal flue gas. Spectroscopic characterization and van der Waals-corrected density functional theory calculations indicate that diamine-Mg2(olz) materials capture CO2 via the formation of ammonium carbamate chains. These results point more broadly to the opportunity for fundamentally advancing materials in this class through judicious design.

10.
J Am Chem Soc ; 145(24): 13273-13283, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37294975

RESUMEN

Metal-organic frameworks (MOFs) are crystalline, porous solids constructed from organic linkers and inorganic nodes that are promising for applications in chemical separations, gas storage, and catalysis, among many others. However, a major roadblock to the widespread implementation of MOFs, including highly tunable and hydrolytically stable Zr- and Hf-based frameworks, is their benchtop-scalable synthesis, as MOFs are typically prepared under highly dilute (≤0.01 M) solvothermal conditions. This necessitates the use of liters of organic solvent to prepare only a few grams of MOF. Herein, we demonstrate that Zr- and Hf-based frameworks (eight examples) can self-assemble at much higher reaction concentrations than are typically utilized, up to 1.00 M in many cases. Combining stoichiometric amounts of Zr or Hf precursors with organic linkers at high concentrations yields highly crystalline and porous MOFs, as confirmed by powder X-ray diffraction (PXRD) and 77 K N2 surface area measurements. Furthermore, the use of well-defined pivalate-capped cluster precursors avoids the formation of ordered defects and impurities that arise from standard metal chloride salts. These clusters also introduce pivalate defects that increase the exterior hydrophobicity of several MOFs, as confirmed by water contact angle measurements. Overall, our findings challenge the standard assumption that MOFs must be prepared under highly dilute solvothermal conditions for optimal results, paving the way for their scalable and user-friendly synthesis in the laboratory.

11.
ACS Appl Polym Mater ; 5(1): 1056-1066, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-37123564

RESUMEN

Strategies for the sustainable synthesis of redox-active organic polymers could lead to next-generation organic electrode materials for electrochemical energy storage, electrocatalysis, and electro-swing chemical separations. Among redox-active moieties, benzils or aromatic 1,2-diones are particularly attractive due to their high theoretical gravimetric capacities and fast charge/discharge rates. Herein, we demonstrate that the cyanide-catalyzed polymerization of simple dialdehyde monomers unexpectedly leads to insoluble redox-active benzil-linked polymers instead of the expected benzoin polymers, as supported by solid-state nuclear magnetic resonance spectroscopy and electrochemical characterization. Mechanistic studies suggest that cyanide-mediated benzoin oxidation occurs by hydride transfer to the solvent, and that the insolubility of the benzil-linked polymers protects them from subsequent cyanolysis. The thiophene-based polymer poly(BTDA) is an intriguing organic electrode material that demonstrates two reversible one-electron reductions with monovalent cations such as Li+ and Na+ but one two-electron reduction with divalent Mg2+. As such, the tandem benzoin-oxidation polymerization reported herein represents a sustainable method for the synthesis of highly tunable and redox-active organic materials.

12.
Angew Chem Int Ed Engl ; 62(17): e202218252, 2023 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-36811601

RESUMEN

Metal-organic frameworks (MOFs) are porous, crystalline materials constructed from organic linkers and inorganic nodes with myriad potential applications in chemical separations, catalysis, and drug delivery. A major barrier to the application of MOFs is their poor scalability, as most frameworks are prepared under highly dilute solvothermal conditions using toxic organic solvents. Herein, we demonstrate that combining a range of linkers with low-melting metal halide (hydrate) salts leads directly to high-quality MOFs without added solvent. Frameworks prepared under these ionothermal conditions possess porosities comparable to those prepared under traditional solvothermal conditions. In addition, we report the ionothermal syntheses of two frameworks that cannot be prepared directly under solvothermal conditions. Overall, the user-friendly method reported herein should be broadly applicable to the discovery and synthesis of stable metal-organic materials.

13.
J Am Chem Soc ; 145(2): 1072-1082, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36595477

RESUMEN

The crystal packing of organic chromophores has a profound impact on their photophysical properties. Molecular crystal engineering is generally incapable of producing precisely spaced arrays of molecules for use in photovoltaics, light-emitting diodes, and sensors. A promising alternative strategy is the incorporation of chromophores into crystalline metal-organic frameworks (MOFs), leading to matrix coordination-induced emission (MCIE) upon confinement. However, it remains unclear how the precise arrangement of chromophores and defects dictates photophysical properties in these systems, limiting the rational design of well-defined photoluminescent materials. Herein, we report new, robust Zr-based MOFs constructed from the linker tetrakis(4-carboxyphenyl)ethylene (TCPE4-) that exhibit an unexpected structural transition in combination with a prominent shift from green to blue photoluminescence (PL) as a function of the amount of acid modulator (benzoic, formic, or acetic acid) used during synthesis. Time-resolved PL (TRPL) measurements provide full spectral information and reveal that the observed hypsochromic shift arises due to a higher concentration of linker substitution defects at higher modulator concentrations, leading to broader excitation transfer-induced spectral diffusion. Spectral diffusion of this type has not been reported in a MOF to date, and its observation provides structural information that is otherwise unobtainable using traditional crystallographic techniques. Our findings suggest that defects have a profound impact on the photophysical properties of MOFs and that their presence can be readily tuned to modify energy transfer processes within these materials.


Asunto(s)
Estructuras Metalorgánicas , Ácido Acético , Ácido Benzoico , Cristalografía , Difusión
14.
Macromol Rapid Commun ; 44(11): e2200751, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36413748

RESUMEN

Emissive covalent organic frameworks (COFs) have recently emerged as next-generation porous materials with attractive properties such as tunable topology, porosity, and inherent photoluminescence. Among the different types of COFs, substoichiometric frameworks (so-called Type III COFs) are especially attractive due to the possibility of not only generating unusual topology and complex pore architectures but also facilitating the introduction of well-defined functional groups at precise locations for desired functions. Herein, the first example of a highly emissive (PLQY 6.8%) substoichiometric 2D-COF (COF-SMU-1) featuring free uncondensed aldehyde groups is reported. In particular, COF-SMU-1 features a dual-pore architecture with an overall bex net topology, tunable emission in various organic solvents, and distinct colorimetric changes in the presence of water. To gain further insights into its photoluminescence properties, the charge transfer, excimer emission, and excited state exciton dynamics of COF-SMU-1 are investigated using femtosecond transient absorption spectroscopy in different organic solvents. Additionally, highly enhanced atmospheric water-harvesting properties of COF-SMU-1 are revealed using FT-IR and water sorption studies.The findings will not only lead to in-depth understanding of structure-property relationships in emissive COFs but also open new opportunities for designing COFs for potential applications in solid-state lighting and water harvesting.


Asunto(s)
Estructuras Metalorgánicas , Agua , Espectroscopía Infrarroja por Transformada de Fourier , Aldehídos , Solventes
15.
Chem Mater ; 35(23): 10086-10098, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38225948

RESUMEN

Metal-organic frameworks (MOFs) are porous, crystalline materials constructed from organic linkers and inorganic nodes with potential utility in gas separations, drug delivery, sensing, and catalysis. Small variations in MOF synthesis conditions can lead to a range of accessible frameworks with divergent chemical or photophysical properties. New methods to controllably access phases with tailored properties would broaden the scope of MOFs that can be reliably prepared for specific applications. Herein, we demonstrate that simply increasing the reaction concentration during the solvothermal synthesis of M2(dobdc) (M = Mg, Mn, Ni; dobdc4- = 2,5-dioxido-1,4-benzenedicarboxylate) MOFs unexpectedly leads to trapping of a new framework termed CORN-MOF-1 (CORN = Cornell University) instead. In-depth spectroscopic, crystallographic, and computational studies support that CORN-MOF-1 has a similar structure to M2(dobdc) but with partially protonated linkers and charge-balancing or coordinated formate groups in the pores. The resultant variation in linker spacings causes CORN-MOF-1 (Mg) to be strongly photoluminescent in the solid state, whereas H4dobdc and Mg2(dobdc) are weakly emissive due to excimer formation. In-depth photophysical studies suggest that CORN-MOF-1 (Mg) is the first MOF based on the H2dobdc2- linker that likely does not emit via an excited state intramolecular proton transfer (ESIPT) pathway. In addition, CORN-MOF-1 variants can be converted into high-quality samples of the thermodynamic M2(dobdc) phases by heating in N,N-dimethylformamide (DMF). Overall, our findings support that high-concentration synthesis provides a straightforward method to identify new MOFs with properties distinct from known materials and to produce highly porous samples of MOFs, paving the way for the discovery and gram-scale synthesis of framework materials.

16.
Acc Mater Res ; 4(10): 867-878, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-38226178

RESUMEN

Metal-organic frameworks (MOFs) are porous, crystalline materials constructed from organic linkers and inorganic nodes that have attracted widespread interest due to their permanent porosity and highly modular structures. However, the large volumes of organic solvents and additives, long reaction times, and specialized equipment typically required to synthesize MOFs hinder their widespread adoption in both academia and industry. Recently, our lab has developed several user-friendly methods for the gram-scale (1-100 g) preparation of MOFs. Herein, we summarize our progress in the development of high-concentration solvothermal, mechanochemical, and ionothermal syntheses of MOFs, as well as in minimizing the amount of modulators required to prepare highly crystalline Zr-MOFs. To begin, we detail our work elucidating key features of acid modulation in Zr-MOFs to improve upon current dilute solvothermal syntheses. Choosing an optimal modulator maximizes the crystallinity and porosity of Zr-MOFs while minimizing the quantity of modulator needed, reducing the waste associated with MOF synthesis. By evaluating a range of modulators, we identify the pKa, size, and structural similarity of the modulator to the linker as controlling factors in modulating ability. In the following section, we describe two high-concentration solvothermal methods for the synthesis of Zr-MOFs and demonstrate their generality among a range of frameworks. We also target the M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn, Cd; dobdc4- = 2,5-dioxido-1,4-benzenedicarboxylate) family of MOFs for high-concentration synthesis and introduce a two-step preparation of several variants that proceeds through a novel kinetic phase. The high-concentration methods we discuss produce MOFs on multi-gram scale with comparable properties to those prepared under traditional dilute solvothermal conditions. Next, to further curtail solvent waste and accelerate reaction times, we discuss the mechanochemical preparation of M2(dobdc) MOFs utilizing liquid amine additives in a planetary ball mill, which we also apply to the synthesis of two related salicylate frameworks. These samples exhibit comparable porosities to traditional dilute solvothermal samples but can be synthesized in just minutes, as opposed to days, and require under 1 mL of liquid additive to prepare ~0.5 g of material. In the following section, we discuss our efforts to avoid specialized equipment and eliminate solvent use entirely by employing ionothermal conditions to prepare a variety of azolate- and salicylate-based MOFs. Simply combining metal chloride (hydrate) salts with organic linkers at temperatures above the melting points of the salts affords high-quality framework materials. Further, ionothermal conditions enable the syntheses of two new Fe(III) M2(dobdc) derivatives that cannot be synthesized under normal solvothermal conditions. Last, as a demonstrative example, we discuss our efforts to synthesize 100 g of high-quality Mg2(dobdc) in a single batch using a high-concentration (1.0 M) hydrothermal synthesis. Our Account will be of significant interest to researchers aiming to prepare gram-scale quantities of MOFs for further study.

17.
Chem Mater ; 35(13): 4883-4896, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38222037

RESUMEN

Metal-organic frameworks (MOFs) are porous, crystalline solids constructed from organic linkers and inorganic nodes that have been widely studied for applications in gas storage, chemical separations, and drug delivery. Owing to their highly modular structures and tunable pore environments, we propose that MOFs have significant untapped potential as catalysts and reagents relevant to the synthesis of next-generation therapeutics. Herein, we outline the properties of MOFs that make them promising for applications in synthetic organic chemistry, including new reactivity and selectivity, enhanced robustness, and user-friendly preparation. In addition, we outline the challenges facing the field and propose new directions to maximize the utility of MOFs for drug synthesis. This perspective aims to bring together the organic and MOF communities to develop new heterogeneous platforms capable of achieving synthetic transformations that cannot be replicated by homogeneous systems.

18.
ACS Appl Mater Interfaces ; 14(48): 53928-53935, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36413751

RESUMEN

Chlorine (Cl2) is a toxic and corrosive gas that is both an essential reagent in industry and a potent chemical warfare agent. Materials that can strongly bind Cl2 at low pressures are essential for industrial and civilian personal protective equipment (PPE). Herein, we report the first examples of irreversible Cl2 capture via the dichlorination of alkene linkages in Zr-based metal-organic frameworks. Frameworks constructed from fumarate (Zr-fum) and stilbene (Zr-stilbene) linkers retain long-range order and accessible porosity after alkene dichlorination. In addition, energy-dispersive X-ray spectroscopy reveals an even distribution of Cl throughout both materials after Cl2 capture. Cl2 uptake experiments reveal high irreversible uptake of Cl2 (>10 wt %) at low partial pressures (<100 mbar), particularly in Zr-fum. In contrast, traditional porous carbons mostly display reversible Cl2 capture, representing a continued risk to users after exposure. Overall, our results support that alkene dichlorination represents a new pathway for reactive Cl2 capture, opening new opportunities for binding this gas irreversibly in PPE.

19.
Chem Mater ; 34(7): 3383-3394, 2022 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36238710

RESUMEN

Acid modulation is among the most widely employed methods for preparing metal-organic frameworks (MOFs) that are both stable and highly crystalline, yet there exist few guiding principles for selecting the optimal modulator for a given system. Using the Zr-based MOFs UiO-66 and UiO-68-Me2 (UiO = Universitetet i Oslo) as representative materials, here we present for the first time an in-depth structure-activity study of acid modulators and identify key principles of modulation for the synthesis of highly crystalline Zr-MOFs. By applying whole pattern fitting of powder X-ray diffraction (PXRD) patterns as a technique for evaluating modulator efficacy, complemented by scanning electron microscopy (SEM), 1H NMR, and thermogravimetric analysis (TGA), we demonstrate that the key to effective modulation is competition between the linker and modulator for coordination to the Zr secondary building units (SBUs). Specifically, we illustrate that a close match in pK a and structure between the linker and modulator favors larger and more well-defined crystallites, particularly with sterically unhindered aromatic acid modulators. Based on our findings, we demonstrate that 5-membered heteroaromatic carboxylic acids are among the most efficient acid modulators identified to date for the synthesis of several representative Zr-MOFs with fcu net topologies. In addition, we find that coordination modulation is superior to exogenous acid modulation at higher modulator concentrations. Finally, we compare 1H NMR and TGA as data-driven methods for quantifying linker deficiencies in modulated MOF syntheses. The guiding principles established herein have critical implications for the scalable and controllable synthesis of highly crystalline and stable MOFs relevant to chemical separations, gas storage, and catalysis.

20.
Chem Sci ; 13(32): 9191-9201, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-36093008

RESUMEN

Organic electrode materials offer unique opportunities to utilize ion-electrode interactions to develop diverse, versatile, and high-performing secondary batteries, particularly for applications requiring high power densities. However, a lack of well-defined structure-property relationships for redox-active organic materials restricts the advancement of the field. Herein, we investigate a family of diimide-based polymer materials with several charge-compensating ions (Li+, Na+, K+) in order to systematically probe how redox-active moiety, ion, and polymer flexibility dictate their thermodynamic and kinetic properties. When favorable ion-electrode interactions are employed (e.g., soft K+ anions with soft perylenediimide dianions), the resulting batteries demonstrate increased working potentials and improved cycling stabilities. Further, for all polymers examined herein, we demonstrate that K+ accesses the highest percentage of redox-active groups due to its small solvation shell/energy. Through crown ether experiments, cyclic voltammetry, and activation energy measurements, we provide insights into the charge compensation mechanisms of three different polymer structures and rationalize these findings in terms of the differing degrees of improvements observed when cycling with K+. Critically, we find that the most flexible polymer enables access to the highest fraction of active sites due to the small activation energy barrier during charge/discharge. These results suggest that improved capacities may be accessible by employing more flexible structures. Overall, our in-depth structure-activity investigation demonstrates how variables such as polymer structure and cation can be used to optimize battery performance and enable the realization of novel battery chemistries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...