Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(52): e2305414120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38134198

RESUMEN

Human migration and mobility drives major societal phenomena including epidemics, economies, innovation, and the diffusion of ideas. Although human mobility and migration have been heavily constrained by geographic distance throughout the history, advances, and globalization are making other factors such as language and culture increasingly more important. Advances in neural embedding models, originally designed for natural language, provide an opportunity to tame this complexity and open new avenues for the study of migration. Here, we demonstrate the ability of the model word2vec to encode nuanced relationships between discrete locations from migration trajectories, producing an accurate, dense, continuous, and meaningful vector-space representation. The resulting representation provides a functional distance between locations, as well as a "digital double" that can be distributed, re-used, and itself interrogated to understand the many dimensions of migration. We show that the unique power of word2vec to encode migration patterns stems from its mathematical equivalence with the gravity model of mobility. Focusing on the case of scientific migration, we apply word2vec to a database of three million migration trajectories of scientists derived from the affiliations listed on their publication records. Using techniques that leverage its semantic structure, we demonstrate that embeddings can learn the rich structure that underpins scientific migration, such as cultural, linguistic, and prestige relationships at multiple levels of granularity. Our results provide a theoretical foundation and methodological framework for using neural embeddings to represent and understand migration both within and beyond science.


Asunto(s)
Lenguaje , Semántica , Humanos , Aprendizaje Automático , Aprendizaje , Procesamiento de Lenguaje Natural
2.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34544861

RESUMEN

Unbiased science dissemination has the potential to alleviate some of the known gender disparities in academia by exposing female scholars' work to other scientists and the public. And yet, we lack comprehensive understanding of the relationship between gender and science dissemination online. Our large-scale analyses, encompassing half a million scholars, revealed that female scholars' work is mentioned less frequently than male scholars' work in all research areas. When exploring the characteristics associated with online success, we found that the impact of prior work, social capital, and gendered tie formation in coauthorship networks are linked with online success for men, but not for women-even in the areas with the highest female representation. These results suggest that while men's scientific impact and collaboration networks are associated with higher visibility online, there are no universally identifiable facets associated with success for women. Our comprehensive empirical evidence indicates that the gender gap in online science dissemination is coupled with a lack of understanding the characteristics that are linked with female scholars' success, which might hinder efforts to close the gender gap in visibility.


Asunto(s)
Autoria/normas , Sistemas en Línea/normas , Revisión de la Investigación por Pares/tendencias , Publicaciones/normas , Ciencia/normas , Sexismo/prevención & control , Femenino , Humanos , Masculino
3.
Entropy (Basel) ; 22(8)2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-33286646

RESUMEN

We propose a new citation model which builds on the existing models that explicitly or implicitly include "direct" and "indirect" (learning about a cited paper's existence from references in another paper) citation mechanisms. Our model departs from the usual, unrealistic assumption of uniform probability of direct citation, in which initial differences in citation arise purely randomly. Instead, we demonstrate that a two-mechanism model in which the probability of direct citation is proportional to the number of authors on a paper (team size) is able to reproduce the empirical citation distributions of articles published in the field of astronomy remarkably well, and at different points in time. Interpretation of our model is that the intrinsic citation capacity, and hence the initial visibility of a paper, will be enhanced when more people are intimately familiar with some work, favoring papers from larger teams. While the intrinsic citation capacity cannot depend only on the team size, our model demonstrates that it must be to some degree correlated with it, and distributed in a similar way, i.e., having a power-law tail. Consequently, our team-size model qualitatively explains the existence of a correlation between the number of citations and the number of authors on a paper.

4.
Proc Natl Acad Sci U S A ; 116(36): 17625-17626, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31416919
5.
Proc Natl Acad Sci U S A ; 115(50): 12616-12623, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30530691

RESUMEN

Contemporary science has been characterized by an exponential growth in publications and a rise of team science. At the same time, there has been an increase in the number of awarded PhD degrees, which has not been accompanied by a similar expansion in the number of academic positions. In such a competitive environment, an important measure of academic success is the ability to maintain a long active career in science. In this paper, we study workforce trends in three scientific disciplines over half a century. We find dramatic shortening of careers of scientists across all three disciplines. The time over which half of the cohort has left the field has shortened from 35 y in the 1960s to only 5 y in the 2010s. In addition, we find a rapid rise (from 25 to 60% since the 1960s) of a group of scientists who spend their entire career only as supporting authors without having led a publication. Altogether, the fraction of entering researchers who achieve full careers has diminished, while the class of temporary scientists has escalated. We provide an interpretation of our empirical results in terms of a survival model from which we infer potential factors of success in scientific career survivability. Cohort attrition can be successfully modeled by a relatively simple hazard probability function. Although we find statistically significant trends between survivability and an author's early productivity, neither productivity nor the citation impact of early work or the level of initial collaboration can serve as a reliable predictor of ultimate survivability.

6.
Science ; 359(6379)2018 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-29496846

RESUMEN

Identifying fundamental drivers of science and developing predictive models to capture its evolution are instrumental for the design of policies that can improve the scientific enterprise-for example, through enhanced career paths for scientists, better performance evaluation for organizations hosting research, discovery of novel effective funding vehicles, and even identification of promising regions along the scientific frontier. The science of science uses large-scale data on the production of science to search for universal and domain-specific patterns. Here, we review recent developments in this transdisciplinary field.

7.
Phys Rev Lett ; 120(4): 048301, 2018 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-29437427

RESUMEN

We introduce a model for the emergence of innovations, in which cognitive processes are described as random walks on the network of links among ideas or concepts, and an innovation corresponds to the first visit of a node. The transition matrix of the random walk depends on the network weights, while in turn the weight of an edge is reinforced by the passage of a walker. The presence of the network naturally accounts for the mechanism of the "adjacent possible," and the model reproduces both the rate at which novelties emerge and the correlations among them observed empirically. We show this by using synthetic networks and by studying real data sets on the growth of knowledge in different scientific disciplines. Edge-reinforced random walks on complex topologies offer a new modeling framework for the dynamics of correlated novelties and are another example of coevolution of processes and networks.


Asunto(s)
Creatividad , Difusión de Innovaciones , Modelos Teóricos , Humanos
8.
Scientometrics ; 110(1): 387-390, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29780187
9.
Sci Rep ; 6: 39769, 2016 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-28008966

RESUMEN

Many internal and environmental triggers of primary headaches have been proposed, but establishing firm evidence for any of them has proved elusive. Geomagnetic storms, the disturbances of Earth's magnetic field following Solar eruptions, have been proposed as one such trigger. In this study, we utilized a vast amount of self-reported symptoms from the online social networking service Twitter in order to investigate a purported link between the level of geomagnetic activity and the onset of primary headaches and migraines. We analyzed 63 million keyword-bearing messages posted over the three years covering the maximum of Solar Cycle 24. No correlation has been found despite the large sample size. The simulation reveals that the significant correlation would have emerged even if only 1% of headache (2% of migraine) instances were caused by geomagnetic disturbances, thus placing very low upper limits on the prevalence of this trigger among Twitter users.


Asunto(s)
Trastornos Migrañosos/epidemiología , Medios de Comunicación Sociales , Actividad Solar , Femenino , Humanos , Masculino
10.
Proc Natl Acad Sci U S A ; 111(11): 3984-9, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24591626

RESUMEN

Research teams are the fundamental social unit of science, and yet there is currently no model that describes their basic property: size. In most fields, teams have grown significantly in recent decades. We show that this is partly due to the change in the character of team size distribution. We explain these changes with a comprehensive yet straightforward model of how teams of different sizes emerge and grow. This model accurately reproduces the evolution of empirical team size distribution over the period of 50 y. The modeling reveals that there are two modes of knowledge production. The first and more fundamental mode employs relatively small, "core" teams. Core teams form by a Poisson process and produce a Poisson distribution of team sizes in which larger teams are exceedingly rare. The second mode employs "extended" teams, which started as core teams, but subsequently accumulated new members proportional to the past productivity of their members. Given time, this mode gives rise to a power-law tail of large teams (10-1,000 members), which features in many fields today. Based on this model, we construct an analytical functional form that allows the contribution of different modes of authorship to be determined directly from the data and is applicable to any field. The model also offers a solid foundation for studying other social aspects of science, such as productivity and collaboration.


Asunto(s)
Conducta Cooperativa , Procesos de Grupo , Modelos Teóricos , Investigación/normas , Humanos , Distribución de Poisson
11.
Sci Rep ; 3: 1069, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23323212

RESUMEN

The birth and decline of disciplines are critical to science and society. How do scientific disciplines emerge? No quantitative model to date allows us to validate competing theories on the different roles of endogenous processes, such as social collaborations, and exogenous events, such as scientific discoveries. Here we propose an agent-based model in which the evolution of disciplines is guided mainly by social interactions among agents representing scientists. Disciplines emerge from splitting and merging of social communities in a collaboration network. We find that this social model can account for a number of stylized facts about the relationships between disciplines, scholars, and publications. These results provide strong quantitative support for the key role of social interactions in shaping the dynamics of science. While several "science of science" theories exist, this is the first account for the emergence of disciplines that is validated on the basis of empirical data.

12.
PLoS One ; 7(11): e49176, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23145111

RESUMEN

References are an essential component of research articles and therefore of scientific communication. In this study we investigate referencing (citing) behavior in five diverse fields (astronomy, mathematics, robotics, ecology and economics) based on 213,756 core journal articles. At the macro level we find: (a) a steady increase in the number of references per article over the period studied (50 years), which in some fields is due to a higher rate of usage, while in others reflects longer articles and (b) an increase in all fields in the fraction of older, foundational references since the 1980s, with no obvious change in citing patterns associated with the introduction of the Internet. At the meso level we explore current (2006-2010) referencing behavior of different categories of authors (21,562 total) within each field, based on their academic age, productivity and collaborative practices. Contrary to some previous findings and expectations we find that senior researchers use references at the same rate as their junior colleagues, with similar rates of re-citation (use of same references in multiple papers). High Modified Price Index (MPI, which measures the speed of the research front more accurately than the traditional Price Index) of senior authors indicates that their research has the similar cutting-edge aspect as that of their younger colleagues. In all fields both the productive researchers and especially those who collaborate more use a significantly lower fraction of foundational references and have much higher MPI and lower re-citation rates, i.e., they are the ones pushing the research front regardless of researcher age. This paper introduces improved bibliometric methods to measure the speed of the research front, disambiguate lead authors in co-authored papers and decouple measures of productivity and collaboration.


Asunto(s)
Conducta Cooperativa , Eficiencia , Revisión de la Investigación por Pares , Investigadores/tendencias , Investigación/tendencias , Factores de Edad , Humanos , Investigación/estadística & datos numéricos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...