Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomater Sci ; 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39016519

RESUMEN

The COVID-19 pandemic prompted the advancement of vaccine technology using mRNA delivery into the host cells. Consequently, mRNA-based vaccines have emerged as a practical approach against SARS-CoV-2 owing to their inherent properties, such as cost-effectiveness, rapid manufacturing, and preservation. These features are vital, especially in resource-constrained regions. Nevertheless, the design of mRNA-based vaccines is intricately intertwined with the refinement of biophysical technologies, thereby establishing their high potential. The preparation of mRNA-based vaccines involves a sequence of phases combining medical and molecular biophysical technologies. Furthermore, their efficiency depends on the capability to optimize their positive attributes, thus paving the way for their subsequent preclinical and clinical evaluations. Using biophysical techniques, the characterization of nucleic acids extends from their initial formulation to their cellular internalization abilities and encapsulation in biomolecule complexes, such as lipid nanoparticles (LNPs), for designing mRNA-based LNPs. Furthermore, nanoparticles are subjected to a series of careful screening steps to assess their physical and chemical characteristics before achieving an optimum formulation suitable for preclinical and clinical studies. This review provides a comprehensive understanding of the fundamental role of biophysical techniques in the complex development of mRNA-based vaccines and their role in the recent success during the COVID-19 pandemic.

2.
Adv Mater ; : e2301770, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36964936

RESUMEN

T-cell immunotherapy offers outstanding advantages in the treatment of various diseases, and with the selection of appropriate targets, efficient disease treatment can be achieved. T-cell immunotherapy has made great progress, but clinical results show that only a small proportion of patients can benefit from T-cell immunotherapy. The extensive mechanistic work outlines a blueprint for using T cells as a new option for immunotherapy, but also presents new challenges, including the balance between different fractions of T cells, the inherent T-cell suppression patterns in the disease microenvironment, the acquired loss of targets, and the decline of T-cell viability. The diversity, flexibility, and intelligence of nanomedicines give them great potential for enhancing T-cell immunotherapy. Here, how T-cell immunotherapy strategies can be adapted with different nanomaterials to enhance therapeutic efficacy is discussed. For two different pathological states, immunosuppression and immune activation, recent advances in nanomedicines for T-cell immunotherapy in diseases such as cancers, rheumatoid arthritis, systemic lupus erythematosus, ulcerative colitis, and diabetes are summarized. With a focus on T-cell immunotherapy, this review highlights the outstanding advantages of nanomedicines in disease treatment, and helps advance one's understanding of the use of nanotechnology to enhance T-cell immunotherapy.

3.
Biosaf Health ; 4(2): 70-78, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35310559

RESUMEN

Despite multiple virus outbreaks over the past decade, including the devastating coronavirus disease 2019 (COVID-19) pandemic, the lack of accurate and timely diagnosis and treatment technologies has wreaked havoc on global biosecurity. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) system has the potential to address these critical needs for tackling infectious diseases to detect viral nucleic acids and inhibit viral replication. This review summarizes how the CRISPR/Cas system is being utilized for the treatment and diagnosis of infectious diseases with the help of biosafety materials and highlights the design principle and in vivo and in vitro efficacy of advanced biosafety materials used to deal with virus attacks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA