Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
PLoS Biol ; 21(2): e3001605, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36780563

RESUMEN

Organismal proteostasis is maintained by intercellular signaling processes including cell nonautonomous stress responses such as transcellular chaperone signaling (TCS). When TCS is activated upon tissue-specific knockdown of hsp-90 in the Caenorhabditis elegans intestine, heat-inducible hsp-70 is induced in muscle cells at the permissive temperature resulting in increased heat stress resistance and lifespan extension. However, our understanding of the molecular mechanism and signaling factors mediating transcellular activation of hsp-70 expression from one tissue to another is still in its infancy. Here, we conducted a combinatorial approach using transcriptome RNA-Seq profiling and a forward genetic mutagenesis screen to elucidate how stress signaling from the intestine to the muscle is regulated. We find that the TCS-mediated "gut-to-muscle" induction of hsp-70 expression is suppressed by HSF-1 and instead relies on transcellular-X-cross-tissue (txt) genes. We identify a key role for the PDZ-domain guanylate cyclase txt-1 and the homeobox transcription factor ceh-58 as signaling hubs in the stress receiving muscle cells to initiate hsp-70 expression and facilitate TCS-mediated heat stress resistance and lifespan extension. Our results provide a new view on cell-nonautonomous regulation of "inter-tissue" stress responses in an organism that highlight a key role for the gut. Our data suggest that the HSF-1-mediated heat shock response is switched off upon TCS activation, in favor of an intercellular stress-signaling route to safeguard survival.


Asunto(s)
Proteínas de Caenorhabditis elegans , Animales , Proteínas de Caenorhabditis elegans/metabolismo , Factores de Transcripción/metabolismo , Transducción de Señal , Factores de Transcripción del Choque Térmico/metabolismo , Respuesta al Choque Térmico/genética , Caenorhabditis elegans/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo
3.
Life Sci Alliance ; 6(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36750365

RESUMEN

Light and electron microscopy techniques have been indispensable in the identification and characterization of liquid-liquid phase separation membraneless organelles. However, for complex membraneless organelles such as the perinuclear germ granule in C. elegans, our understanding of how the intact organelle is regulated is hampered by (1) technical limitations in confocal fluorescence imaging for the simultaneous examination of multiple granule protein markers and (2) inaccessibility of electron microscopy. We take advantage of the newly developed super resolution method of expansion microscopy (ExM) and in situ staining of the whole proteome to examine the C. elegans germ granule, the P granule. We show that in small RNA pathway mutants, the P granule is smaller compared with WT animals. Furthermore, we investigate the relationship between the P granule and two other germ granules, Mutator foci and Z granule, and show that they are located within the same protein-dense regions while occupying distinct subdomains within this ultrastructure. This study will serve as an important tool in our understanding of germ granule biology and the biological role of liquid-liquid phase separation.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/genética , Gránulos de Ribonucleoproteína de Células Germinales , Proteínas de Caenorhabditis elegans/genética , Microscopía , Orgánulos/metabolismo
4.
Nat Commun ; 11(1): 4242, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32843637

RESUMEN

Membraneless organelles are sites for RNA biology including small non-coding RNA (ncRNA) mediated gene silencing. How small ncRNAs utilise phase separated environments for their function is unclear. We investigated how the PIWI-interacting RNA (piRNA) pathway engages with the membraneless organelle P granule in Caenorhabditis elegans. Proteomic analysis of the PIWI protein PRG-1 reveals an interaction with the constitutive P granule protein DEPS-1. DEPS-1 is not required for piRNA biogenesis but piRNA-dependent silencing: deps-1 mutants fail to produce the secondary endo-siRNAs required for the silencing of piRNA targets. We identify a motif on DEPS-1 which mediates a direct interaction with PRG-1. DEPS-1 and PRG-1 form intertwining clusters to build elongated condensates in vivo which are dependent on the Piwi-interacting motif of DEPS-1. Additionally, we identify EDG-1 as an interactor of DEPS-1 and PRG-1. Our study reveals how specific protein-protein interactions drive the spatial organisation and piRNA-dependent silencing within membraneless organelles.


Asunto(s)
Proteínas Argonautas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Silenciador del Gen , ARN Interferente Pequeño/metabolismo , Animales , Proteínas Argonautas/genética , Sitios de Unión , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Gránulos Citoplasmáticos/metabolismo , Células Germinativas/metabolismo , Mutación , Unión Proteica , Proteómica , Interferencia de ARN , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA