Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 20(12)2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-31197106

RESUMEN

Vascular remodeling is a characteristic feature of cardiovascular diseases. Altered cellular processes of vascular smooth muscle cells (VSMCs) is a crucial component in vascular remodeling. Histone deacetylase inhibitor (HDACI), butyrate, arrests VSMC proliferation and promotes cell growth. The objective of the study is to determine the mechanism of butyrate-induced VSMC growth. Using proliferating VSMCs exposed to 5 mM butyrate, immunoblotting studies are performed to determine whether PI3K/Akt pathway that regulates different cellular effects is a target of butyrate-induced VSMC growth. Butyrate inhibits phosphorylation-dependent activation of PI3K, PDK1, and Akt, eliciting differential effects on downstream targets of Akt. Along with previously reported Ser9 phosphorylation-mediated GSK3 inactivation leading to stability, increased expression and accumulation of cyclin D1, and epigenetic histone modifications, inactivation of Akt by butyrate results in: transcriptional activation of FOXO1 and FOXO3 promoting G1 arrest through p21Cip1/Waf1 and p15INK4B upregulation; inactivation of mTOR inhibiting activation of its targets p70S6K and 4E-BP1 impeding protein synthesis; inhibition of caspase 3 cleavage and downregulation of PARP preventing apoptosis. Our findings imply butyrate abrogates Akt activation, causing differential effects on Akt targets promoting convergence of cross-talk between their complimentary actions leading to VSMC growth by arresting proliferation and inhibiting apoptosis through its effect on dual targets, HDAC activity and PI3K/Akt pathway network.


Asunto(s)
Butiratos/farmacología , Histona Desacetilasas/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal , Animales , Apoptosis , Proliferación Celular , Células Cultivadas , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas
2.
Pharmaceuticals (Basel) ; 7(11): 1008-27, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25390157

RESUMEN

Epigenetic mechanisms by altering the expression and, in turn, functions of target genes have potential to modify cellular processes that are characteristics of atherosclerosis, including inflammation, proliferation, migration and apoptosis/cell death. Butyrate, a natural epigenetic modifier and a histone deacetylase inhibitor (HDACi), is an inhibitor of vascular smooth muscle cell (VSMC) proliferation, a critical event in atherogenesis. Here, we examined whether glutathione peroxidases (GPxs), a family of antioxidant enzymes, are modulated by butyrate, contributing to its antiproliferation action on VSMC through the regulation of the inflammatory response by using western blotting, immunostaining methods and activity assay. Treatment of VSMC with butyrate not only upregulates glutathione peroxidase (GPx) 3 and GPx4, but also increases the overall catalytic activity of GPx supporting involvement of antioxidant effect in butyrate arrested VSMC proliferation. Moreover, analysis of the redox-sensitive NF-κB transcription factor system, the target of GPx, reveals that butyrate causes downregulation of IKKα, IKKß, IkBα and NF-κBp65 expression and prevents NF-κBp65 phosphorylation at serine536 causing inhibition of the expression NF-κB target inflammatory genes, including inducible nitric oxide synthase, VCAM-1 and cyclooxygenase-2. Overall, these observations suggest a link between the antioxidant effect and anti-inflammatory response in butyrate-arrested VSMC proliferation, accentuating the atheroprotective and therapeutic potential of natural products, like butyrate, in vascular proliferative diseases.

3.
Xenobiotica ; 43(9): 817-22, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23347001

RESUMEN

Inositol hexanicotinate (IHN) is an ester of the anti-hyperlipidemic drug nicotinic acid (NA). This study assessed the hydrolysis rate of IHN in human and rat plasma, and pharmacokinetics of the drug using a rat animal model. IHN (10 or 50 µg/mL) was incubated in plasma at 37 °C for 72 h. Kinetic parameters were determined based on the disappearance of IHN and the appearance of NA. The mean IHN disappearance and NA appearance half-lives were 1.07 and 3.93 h in human plasma, and 0.152 and 2.68 h in rat plasma. Increasing the initial plasma concentration to 50 µg/mL increased the NA appearance half-life in human and rat plasma to 4.66 and 6.47 h, respectively. After single 50 or 100 mg/kg intravenous dose of IHN to Sprague-Dawley rats, the drug showed statistically significant dose-dependent alterations in systemic clearance, suggesting a non-linear saturable elimination of IHN. Dose-normalized mean plasma levels of NA increased by 30% with increasing IHN dose (p < 0.02). The mean metabolic ratio (i.e. NA/IHN AUC ratio) significantly increased with increasing IHN dose (p < 0.05). The results provide first indication of saturable elimination and rapid disappearance of IHN, while niacin was slowly formed.


Asunto(s)
Ácidos Nicotínicos/farmacocinética , Animales , Biotransformación , Cromatografía Líquida de Alta Presión , Semivida , Humanos , Hidrólisis , Cinética , Masculino , Ácidos Nicotínicos/sangre , Ácidos Nicotínicos/química , Ratas , Ratas Sprague-Dawley
4.
Pharmaceuticals (Basel) ; 5(9): 925-43, 2012 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-24280698

RESUMEN

The histone deacetylase (HDAC) inhibitors, butyrate and trichostatin A (TSA), are epigenetic histone modifiers and proliferation inhibitors by downregulating cyclin D1, a positive cell cycle regulator, and upregulating p21Cip1 and INK family of proteins, negative cell cycle regulators. Our recent study indicated cyclin D1 upregulation in vascular smooth muscle cells (VSMC) that are proliferation-arrested by butyrate. Here we investigate whether cyclin D1 upregulation is a unique response of VSMC to butyrate or a general response to HDAC inhibitors (HDACi) by evaluating the effects of butyrate and TSA on VSMC. While butyrate and TSA inhibit VSMC proliferation via cytostatic and cytotoxic effects, respectively, they downregulate cdk4, cdk6, and cdk2, and upregulate cyclin D3, p21Cip1 and p15INK4B, and cause similar effects on key histone H3 posttranslational modifications. Conversely, cyclin D1 is upregulated by butyrate and inhibited by TSA. Assessment of glycogen synthase 3-dependent phosphorylation, subcellular localization and transcription of cyclin D1 indicates that differential effects of butyrate and TSA on cyclin D1 levels are linked to disparity in cyclin D1 gene expression. Disparity in butyrate- and TSA-induced cyclin D1 may influence transcriptional regulation of genes that are associated with changes in cellular morphology/cellular effects that these HDACi confer on VSMC, as a transcriptional modulator.

5.
FEBS J ; 274(22): 5962-78, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17961182

RESUMEN

Vascular smooth muscle cell (VSMC) proliferation is an important etiological factor in vascular proliferative diseases such as primary atherosclerosis, hypertension, arterial and in-stent restenosis, and transplant vasculopathy. Our studies established that butyrate, a bacterial fermentation product of dietary fiber and a chromatin modulator, is a potent inhibitor of VSMC proliferation. The cardiovascular health benefits of a high-fiber diet, the principle source of butyrate in the body, have been known for a long time, however, very little is known about the antiatherogenic potential of butyrate. Because oxidative stress plays an important role in the pathogenesis of atherosclerosis, we examined involvement of the glutathione/glutathione S-transferase (GST) antioxidant system in butyrate's inhibition of VSMC proliferation. Treatment of proliferating VSMCs with butyrate leads to the induction of several GSTs. Interestingly, our study also demonstrated the nuclear localization of GST-P1 (GST-7-7), which is considered to be a cytosolic protein; this was demonstrated using immunostaining and was corroborated by western blotting. Also, the butyrate-induced antiproliferative action, and the induction of GST-P1 and its nuclear localization are downregulated when butyrate is withdrawn. Furthermore, assessment of intracellular glutathione levels reveals their augmentation by butyrate. Conversely, butyrate treatment reduces the levels of reactive oxygen species in VSMCs. Collectively, the butyrate-treatment-related increase in glutathione content, the reduction in reactive oxygen species, the upregulation of GST and the nuclear localization of GST-P1 in growth-arrested VSMCs imply that butyrate's antiproliferative action involves modulation of the cellular redox state. Thus, induction of the glutathione/GST antioxidant system appears to have other regulatory role(s) besides detoxification and regulation of the cellular redox state, for example, cell-cycle control and cell proliferation, which are both critical to atherogenesis.


Asunto(s)
Antioxidantes/metabolismo , Ácido Butírico/farmacología , Proliferación Celular/efectos de los fármacos , Glutatión Transferasa/metabolismo , Glutatión/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Animales , Secuencia de Bases , Cartilla de ADN , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo
6.
Mol Cell Biochem ; 254(1-2): 21-36, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14674679

RESUMEN

Excessive proliferation of vascular smooth muscle cells (VSMCs) is a critical element in the development of several vascular pathologies, particularly in atherosclerosis and in restenosis due to angioplasty. We have shown that butyrate, a powerful antiproliferative agent, a strong promoter of cell differentiation and an inducer of apoptosis inhibits VSMC proliferation at physiological concentrations with no cytotoxicity. In the present study, we have used cDNA array technology to unravel the molecular basis of the antiproliferative effect of butyrate on VSMCs. To assess the involvement of gene expression in butyrate-inhibited VSMC proliferation, proliferating VSMCs were exposed to 5 mmol/l butyrate 1 through 5 days after plating. Expression profiles of 1.176 genes representing different functional classes in untreated control and butyrate treated VSMCs were compared. A total of 111 genes exhibiting moderate (2.0-5.0 fold) to strong (> 5.0 fold) differential expression were identified. Analysis of these genes indicates that butyrate treatment mainly alters the expression of four different functional classes of genes, which include: 43 genes implicated in cell growth and differentiation, 13 genes related to stress response, 11 genes associated with vascular function and 8 genes normally present in neuronal cells. Examination of differentially expressed cell growth and differentiation related genes indicate that butyrate-inhibited VSMC proliferation appears to involve down-regulation of genes that encode several positive regulators of cell growth and up-regulation of some negative regulators of growth or differentiation inducers. Some of the down-regulated genes include proliferating cell nuclear antigen (PCNA), retinoblastoma susceptibility related protein p130 (pRb), cell division control protein 2 homolog (cdc2), cyclin B1, cell division control protein 20 homolog (p55cdc), high mobility group (HMG) 1 and 2 and several others. Whereas the up-regulated genes include cyclin D1, p21WAF1, p141NK4B/p15INK5B, Clusterin, inhibitor of DNA binding 1 (ID1) and others. On the other hand, butyrate-responsive stress-related genes include some of the members of heat shock protein (HSP), glutathione-s-transferase (GST), glutathione peroxidase (GSH-PXs) and cytochrome P450 (CYP) families. Additionally, several genes related to vascular and neuronal function are also responsive to butyrate treatment. Although involvement of genes that encode stress response, vascular and neuronal functional proteins in cell proliferation is not clear, cDNA expression array data appear to suggest that they may play a role in the regulation of cell proliferation. However, cDNA expression profiles indicate that butyrate-inhibited VSMC proliferation involves combined action of a proportionally large number of both positive and negative regulators of growth, which ultimately causes growth arrest of VSMCs. Furthermore, these butyrate-induced differential gene expression changes are not only consistent with the antiproliferative effect of butyrate but are also in agreement with the roles that these gene products play in cell proliferation.


Asunto(s)
Butiratos/farmacología , Regulación de la Expresión Génica , Músculo Liso Vascular/metabolismo , Animales , Aorta/citología , Northern Blotting , Ácido Butírico/metabolismo , División Celular , Células Cultivadas , ADN/metabolismo , ADN Complementario/metabolismo , Regulación hacia Abajo , Glutatión Transferasa/metabolismo , Neuronas/metabolismo , Hibridación de Ácido Nucleico , Análisis de Secuencia por Matrices de Oligonucleótidos , Unión Proteica , ARN/metabolismo , ARN Mensajero/metabolismo , Ratas , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Factores de Tiempo , Regulación hacia Arriba
7.
Mol Cell Biochem ; 240(1-2): 83-98, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12487375

RESUMEN

Acrolein, a major component of cigarette smoke, an environmental pollutant and an endogenous lipid peroxidation product, has been implicated in the development of atherosclerosis. Although a link between vascular injury and acrolein has been indicated, the exact molecular mechanism of acrolein-induced toxicity to vasculature is unknown. In an effort to elucidate the molecular basis of acrolein-induced vascular toxicity, the possibility of the intracellular signaling system as one of the targets of acrolein-induced toxicity is investigated in the present study. Exposure of cultured rat vascular smooth muscle cells (VSMCs) to different doses of acrolein not only causes cytotoxicity but also alters cellular morphology in a concentration and time-dependent manner. VSMCs exhibit cytotoxicity to a narrow concentration range of 5-10 microg/ml and display no toxicity to 2 microg/ml acrolein even after 24 h of exposure. Furthermore, exposure to acrolein results in activation of members of the mitogen-activated protein kinase (MAPK) family and protein tyrosine kinases. The extracellular signal-regulated kinases 1 and 2 (ERK1/2), stress-activated protein kinases/c-jun NH2-terminal kinases (SAPK/JNK) and p38MAPK are effectively and transiently activated by acrolein in a concentration and time-dependent fashion. While all three MAPKs exhibit significant activation within 5 min of exposure to acrolein, maximum activation (ERK1/2 and p38MAPK) or close to maximum activation (SAPK/JNK) occurs on exposure to 5 microg/ml acrolein for 2 h. Acrolein-induced activation of MAPKs is further substantiated by the activation of transcription factors, c-jun and activator transcription factor-2 (ATF-2), by acrolein-activated SAPK/JNK and p38MAPK, respectively. Additionally several cellular proteins exhibit spectacular protein tyrosine phosphorylation, particularly in response to 2 and 5 microg/ml of acrolein. Interestingly, the acrolein-induced activation of MAPKs precedes acrolein-stimulated protein tyrosine phosphorylation, which occurs after 2 h of exposure to acrolein. However, the time course of maximum protein tyrosine phosphorylation profile corresponds to the peak activation profile of MAPKs. The activation of MAPKs and protein tyrosine phosphorylation by acrolein appears to be independent of acrolein-induced toxicity. VSMCs exposed to 2 microg/ml acrolein exhibit no toxicity but stimulates significant activation of MAPKs and protein tyrosine phosphorylation. Although acrolein-induced VSMC toxicity is not blocked by MAPK inhibitors, PD98059, an inhibitor of MAPK kinase and SB203580, an inhibitor of p38MAPK, eitheralone or in combination, each MAPK responds differently to the inhibitors. Most prominently, although SB203580, an inhibitor of both SAPK/JNK and p38MAPK, significantly inhibited acrolein-induced activation of p38MAPK, it also stimulated SAPK/JNK activation by acrolein alone and in combination with PD98059. These results provide the first evidence that the activation of both growth-regulated (ERK1/2) and stress-regulated (SAPK/JNK and p38MAPK) MAPKs as well as tyrosine kinases are involved in the mediation of acrolein-induced effects on VSMC, which may play a crucial role in vascular pathogenesis due to environmentally and endogenously produced acrolein.


Asunto(s)
Acroleína/farmacología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Animales , Aorta , Activación Enzimática/efectos de los fármacos , Proteínas Quinasas JNK Activadas por Mitógenos , Proteína Quinasa 1 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos , Proteínas Quinasas Activadas por Mitógenos/antagonistas & inhibidores , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Estrés Oxidativo , Fosforilación/efectos de los fármacos , Proteínas Quinasas/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno , Proteínas Quinasas p38 Activadas por Mitógenos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...