Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
medRxiv ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38585951

RESUMEN

Antiretroviral therapy (ART) is not a cure. Upon ART cessation, virus rapidly rebounds from latently-infected cells ("the HIV reservoir"). The reservoir is largely stabilized at the time of ART initiation and then decays slowly. Here, leveraging >500 longitudinal samples from 67 people with HIV (PWH) treated during acute infection, we developed a novel mathematical model to predict reservoir decay using the intact proviral DNA assay (IPDA) from peripheral CD4+ T cells. Nonlinear generalized additive models adjusted for initial CD4+ T count, pre-ART viral load, and timing of ART initiation demonstrated rapid biphasic decay of intact DNA (week 0-5: t1/2 ~0.71 months; week 5-24: t1/2 ~3.9 months) that extended out to 1 year of ART, with similar trends for defective DNA. Predicted reservoir decay were faster for participants individuals with earlier timing of ART initiation, higher initial CD4+ T cell count, and lower pre-ART viral load. These estimates are ~5-fold faster than prior reservoir decay estimates among chronic-treated PWH. Thus, these data add to our limited understanding of host viral control at the earliest stages of HIV reservoir stabilization, potentially informing future HIV cure efforts aimed at diverse, global population of PWH initiating ART at varying stages of disease.

2.
PLoS Pathog ; 19(11): e1011114, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38019897

RESUMEN

The major barrier to an HIV cure is the HIV reservoir: latently-infected cells that persist despite effective antiretroviral therapy (ART). There have been few cohort-based studies evaluating host genomic or transcriptomic predictors of the HIV reservoir. We performed host RNA sequencing and HIV reservoir quantification (total DNA [tDNA], unspliced RNA [usRNA], intact DNA) from peripheral CD4+ T cells from 191 ART-suppressed people with HIV (PWH). After adjusting for nadir CD4+ count, timing of ART initiation, and genetic ancestry, we identified two host genes for which higher expression was significantly associated with smaller total DNA viral reservoir size, P3H3 and NBL1, both known tumor suppressor genes. We then identified 17 host genes for which lower expression was associated with higher residual transcription (HIV usRNA). These included novel associations with membrane channel (KCNJ2, GJB2), inflammasome (IL1A, CSF3, TNFAIP5, TNFAIP6, TNFAIP9, CXCL3, CXCL10), and innate immunity (TLR7) genes (FDR-adjusted q<0.05). Gene set enrichment analyses further identified significant associations of HIV usRNA with TLR4/microbial translocation (q = 0.006), IL-1/NRLP3 inflammasome (q = 0.008), and IL-10 (q = 0.037) signaling. Protein validation assays using ELISA and multiplex cytokine assays supported these observed inverse host gene correlations, with P3H3, IL-10, and TNF-α protein associations achieving statistical significance (p<0.05). Plasma IL-10 was also significantly inversely associated with HIV DNA (p = 0.016). HIV intact DNA was not associated with differential host gene expression, although this may have been due to a large number of undetectable values in our study. To our knowledge, this is the largest host transcriptomic study of the HIV reservoir. Our findings suggest that host gene expression may vary in response to the transcriptionally active reservoir and that changes in cellular proliferation genes may influence the size of the HIV reservoir. These findings add important data to the limited host genetic HIV reservoir studies to date.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , Interleucina-10 , Inflamasomas , VIH-1/genética , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Linfocitos T CD4-Positivos , Inmunidad Innata/genética , Genes Supresores de Tumor , Expresión Génica , ADN , Carga Viral
3.
bioRxiv ; 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36712077

RESUMEN

The major barrier to an HIV cure is the persistence of infected cells that evade host immune surveillance despite effective antiretroviral therapy (ART). Most prior host genetic HIV studies have focused on identifying DNA polymorphisms (e.g., CCR5Δ32 , MHC class I alleles) associated with viral load among untreated "elite controllers" (~1% of HIV+ individuals who are able to control virus without ART). However, there have been few studies evaluating host genetic predictors of viral control for the majority of people living with HIV (PLWH) on ART. We performed host RNA sequencing and HIV reservoir quantification (total DNA, unspliced RNA, intact DNA) from peripheral CD4+ T cells from 191 HIV+ ART-suppressed non-controllers. Multivariate models included covariates for timing of ART initiation, nadir CD4+ count, age, sex, and ancestry. Lower HIV total DNA (an estimate of the total reservoir) was associated with upregulation of tumor suppressor genes NBL1 (q=0.012) and P3H3 (q=0.012). Higher HIV unspliced RNA (an estimate of residual HIV transcription) was associated with downregulation of several host genes involving inflammasome ( IL1A, CSF3, TNFAIP5, TNFAIP6, TNFAIP9 , CXCL3, CXCL10 ) and innate immune ( TLR7 ) signaling, as well as novel associations with potassium ( KCNJ2 ) and gap junction ( GJB2 ) channels, all q<0.05. Gene set enrichment analyses identified significant associations with TLR4/microbial translocation (q=0.006), IL-1ß/NRLP3 inflammasome (q=0.008), and IL-10 (q=0.037) signaling. HIV intact DNA (an estimate of the "replication-competent" reservoir) demonstrated trends with thrombin degradation ( PLGLB1 ) and glucose metabolism ( AGL ) genes, but data were (HIV intact DNA detected in only 42% of participants). Our findings demonstrate that among treated PLWH, that inflammation, innate immune responses, bacterial translocation, and tumor suppression/cell proliferation host signaling play a key role in the maintenance of the HIV reservoir during ART. Further data are needed to validate these findings, including functional genomic studies, and expanded epidemiologic studies in female, non-European cohorts. Author Summary: Although lifelong HIV antiretroviral therapy (ART) suppresses virus, the major barrier to an HIV cure is the persistence of infected cells that evade host immune surveillance despite effective ART, "the HIV reservoir." HIV eradication strategies have focused on eliminating residual virus to allow for HIV remission, but HIV cure trials to date have thus far failed to show a clinically meaningful reduction in the HIV reservoir. There is an urgent need for a better understanding of the host-viral dynamics during ART suppression to identify potential novel therapeutic targets for HIV cure. This is the first epidemiologic host gene expression study to demonstrate a significant link between HIV reservoir size and several well-known immunologic pathways (e.g., IL-1ß, TLR7, TNF-α signaling pathways), as well as novel associations with potassium and gap junction channels (Kir2.1, connexin 26). Further data are needed to validate these findings, including functional genomic studies and expanded epidemiologic studies in female, non-European cohorts.

4.
Cell Rep Med ; 3(10): 100766, 2022 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-36198308

RESUMEN

Programmed cell death 1 (PD1) and cytotoxic T lymphocyte-associated protein 4 (CTLA4) suppress CD4+ T cell activation and may promote latent HIV infection. By performing leukapheresis (n = 21) and lymph node biopsies (n = 8) in people with HIV on antiretroviral therapy (ART) and sorting memory CD4+ T cells into subsets based on PD1/CTLA4 expression, we investigate the role of PD1 and CTLA 4 in HIV persistence. We show that double-positive (PD1+CTLA4+) cells in blood contain more HIV DNA compared with double-negative (PD1-CTLA4-) cells but still have a lower proportion of cells producing multiply spliced HIV RNA after stimulation as well as reduced upregulation of T cell activation and proliferation markers. Transcriptomics analyses identify differential expression of key genes regulating T cell activation and proliferation with MAF, KLRB1, and TIGIT being upregulated in double-positive compared with double-negative cells, whereas FOS is downregulated. We conclude that, in addition to being enriched for HIV DNA, double-positive cells are characterized by negative signaling and a reduced capacity to respond to stimulation, favoring HIV latency.


Asunto(s)
Infecciones por VIH , Humanos , Linfocitos T CD4-Positivos , Antígeno CTLA-4/genética , Receptores Inmunológicos , ARN , Linfocitos T , Receptor de Muerte Celular Programada 1/metabolismo
5.
JID Innov ; 2(3): 100115, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35757783

RESUMEN

Psoriasis is a chronic, inflammatory skin disease that affects 2‒3% of the global population. Besides skin manifestations, patients with psoriasis have increased susceptibility to a number of comorbidities, including psoriatic arthritis, cardiovascular disease, and inflammatory bowel disease. To understand the systemic component of psoriasis pathogenesis, we performed a pilot study to examine the fecal metagenome, host colonic transcriptome, and host peripheral blood immune profiles of patients with psoriasis and healthy controls. Our study showed increased functional diversity in the gut microbiome of patients with psoriasis. In addition, we identified microbial species that preferentially associate with patients with psoriasis and which have been previously found to associate with other autoimmune diseases. Intriguingly, our data revealed three psoriasis subgroups that have distinct microbial and host features. Integrating these features revealed host‒microbe associations that are specific to psoriasis or particular psoriasis subgroups. Our findings provide insight into the factors that may affect the development of comorbidities in patients with psoriasis and may hold diagnostic potential for early identification of patients with psoriasis at risk for these comorbidities.

6.
J Infect Dis ; 225(10): 1721-1730, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-34655216

RESUMEN

BACKGROUND: Circadian transcription factors that regulate cell-autonomous circadian clocks can also increase human immunodeficiency virus (HIV) transcription in vitro. We aimed to determine whether circadian variation in HIV transcription exists in people with HIV (PWH) on antiretroviral therapy (ART). METHODS: We performed a prospective observational study of male PWH on ART, sampling blood every 4 hours for 24 hours. Using quantitative polymerase chain reaction, we quantified expression of circadian-associated genes, HIV deoxyribonucleic acid (DNA), and cell-associated unspliced (CA-US) ribonucleic acid (RNA) in peripheral blood CD4+ T cells. Plasma sex hormones were quantified alongside plasma and salivary cortisol. The primary outcome was to identify temporal variations in CA-US HIV RNA using a linear mixed-effect regression framework and maximum likelihood estimation. RESULTS: Salivary and plasma cortisol, and circadian genes including Clock, Bmal1, and Per3, varied with a circadian rhythm. Cell-associated unspliced HIV RNA and the ratio of CA-US HIV RNA/DNA in CD4+ T cells also demonstrated circadian variations, with no variation in HIV DNA. Circulating estradiol was highly predictive of CA-US HIV RNA variation in vivo. CONCLUSIONS: Cell-associated unspliced HIV RNA in PWH on ART varies temporally with a circadian rhythm. These findings have implications for the design of clinical trials and biomarkers to assess HIV cure interventions.


Asunto(s)
Infecciones por VIH , Hidrocortisona , Linfocitos T CD4-Positivos , VIH/genética , Infecciones por VIH/tratamiento farmacológico , Humanos , Hidrocortisona/uso terapéutico , Masculino , ARN Viral/genética
7.
J Infect Dis ; 225(7): 1168-1178, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34037766

RESUMEN

Human immunodeficiency virus (HIV) persists in cells despite antiretroviral therapy; however, the influence of cellular mechanisms such as activation, differentiation, and proliferation upon the distribution of proviruses over time is unclear. To address this, we used full-length sequencing to examine proviruses within memory CD4+ T-cell subsets longitudinally in 8 participants. Over time, the odds of identifying a provirus increased in effector and decreased in transitional memory cells. In all subsets, more activated (HLA-DR-expressing) cells contained a higher frequency of intact provirus, as did more differentiated cells such as transitional and effector memory subsets. The proportion of genetically identical proviruses increased over time, indicating that cellular proliferation was maintaining the persistent reservoir; however, the number of genetically identical proviral clusters in each subset was stable. As such, key biological processes of activation, differentiation, and proliferation influence the dynamics of the HIV reservoir and must be considered during the development of any immune intervention.


Asunto(s)
Infecciones por VIH , VIH-1 , Linfocitos T CD4-Positivos , Proliferación Celular , ADN Viral , VIH-1/genética , Humanos , Filogenia , Provirus/genética
8.
AIDS ; 36(2): 177-184, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34934018

RESUMEN

OBJECTIVE: To evaluate the relationship between plasma biomarkers of systemic inflammation and incident age-related macular degeneration (AMD) in persons with the AIDS. DESIGN: Case-control study. METHODS: Participants with incident intermediate-stage AMD (N = 26) in the Longitudinal Study of the Ocular Complications of AIDS (LSOCA) and controls (N = 60) without AMD. Cryopreserved baseline plasma specimens were assayed for biomarkers of inflammation, including high-sensitivity C-reactive protein (CRP), interleukin (IL)-6, interferon-γ inducible protein (IP)-10, soluble CD14 (sCD14), soluble CD163 (sCD163), and intestinal fatty acid-binding protein (I-FABP). RESULTS: After adjustment for age, sex, and race/ethnicity, baseline mean ±â€Šstandard deviation (SD) log10(mg/ml) plasma levels of CRP (0.52 ±â€Š0.60 vs. 0.20 ±â€Š0.43; P = 0.01) and mean ±â€ŠSD log10(pg/ml) plasma levels of sCD14 (6.31 ±â€Š0.11 vs. 6.23 ±â€Š0.14; P = 0.008) were significantly higher among cases (incident AMD) than among controls (no AMD). There was a suggestion that mean ±â€ŠSD baseline log10(pg/ml) plasma IL-6 levels (0.24 ±â€Š0.33 vs. 0.11 ±â€Š0.29; P = 0.10) might be higher among cases than controls. In a separate analysis of 548 participants in LSOCA, elevated baseline levels of plasma inflammatory biomarkers were associated with a greater risk of mortality but not with an increased risk of incident cataract. CONCLUSION: These data suggest that systemic inflammatory biomarkers are associated with incident AMD but not incident cataract in persons with AIDS, and that systemic inflammation may play a role in the pathogenesis of AMD.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Catarata , Infecciones por VIH , Degeneración Macular , Biomarcadores , Proteína C-Reactiva/metabolismo , Estudios de Casos y Controles , Humanos , Estudios Longitudinales
9.
Sci Transl Med ; 13(599)2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34162752

RESUMEN

Toll-like receptor 7 (TLR7) agonists, in combination with other therapies, can induce sustained control of simian-human immunodeficiency virus (SHIV) or simian immunodeficiency virus (SIV) in nonhuman primates. Here, we report the results of a randomized, double-blind, placebo-controlled phase 1b clinical trial of an oral TLR7 agonist, vesatolimod, in HIV-1-infected controllers on antiretroviral therapy (ART). We randomized participants 2:1 to receive vesatolimod (n = 17) or placebo (n = 8) once every other week for a total of 10 doses while continuing on ART. ART was then interrupted, and the time to viral rebound was analyzed using the Kaplan-Meier method. Vesatolimod was associated with induction of immune cell activation, decreases in intact proviral DNA during ART, and a modest increase in time to rebound after ART was interrupted. The delayed viral rebound was predicted by the lower intact proviral DNA at the end of vesatolimod treatment (13 days after the final dose). Inferred pathway analysis suggested increased dendritic cell and natural killer cell cross-talk and an increase in cytotoxicity potential after vesatolimod dosing. Larger clinical studies will be necessary to assess the efficacy of vesatolimod-based combination therapies aimed at long-term control of HIV infection.


Asunto(s)
Infecciones por VIH , Síndrome de Inmunodeficiencia Adquirida del Simio , Virus de la Inmunodeficiencia de los Simios , Animales , Antirretrovirales/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Humanos , Pteridinas , Síndrome de Inmunodeficiencia Adquirida del Simio/tratamiento farmacológico , Receptor Toll-Like 7 , Carga Viral
10.
Viruses ; 13(5)2021 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-33946976

RESUMEN

The latent HIV-1 reservoir is comprised of stably integrated and intact proviruses with limited to no viral transcription. It has been proposed that latent infection may be maintained by methylation of pro-viral DNA. Here, for the first time, we investigate the cytosine methylation of a replication competent provirus (AMBI-1) found in a T cell clone in a donor on antiretroviral therapy (ART). Methylation profiles of the AMBI-1 provirus were compared to other proviruses in the same donor and in samples from three other individuals on ART, including proviruses isolated from lymph node mononuclear cells (LNMCs) and peripheral blood mononuclear cells (PBMCs). We also evaluated the apparent methylation of cytosines outside of CpG (i.e., CpH) motifs. We found no evidence for methylation in AMBI-1 or any other provirus tested within the 5' LTR promoter. In contrast, CpG methylation was observed in the env-tat-rev overlapping reading frame. In addition, we found evidence for differential provirus methylation in cells isolated from LNMCs vs. PBMCs in some individuals, possibly from the expansion of infected cell clones. Finally, we determined that apparent low-level methylation of CpH cytosines is consistent with occasional bisulfite reaction failures. In conclusion, our data do not support the proposition that latent HIV infection is associated with methylation of the HIV 5' LTR promoter.


Asunto(s)
Islas de CpG , Metilación de ADN , ADN Viral , Infecciones por VIH/genética , Infecciones por VIH/virología , VIH-1/genética , Provirus/genética , Terapia Antirretroviral Altamente Activa , Regulación Viral de la Expresión Génica , Genoma Viral , Genómica/métodos , Infecciones por VIH/tratamiento farmacológico , Duplicado del Terminal Largo de VIH/genética , Humanos , Latencia del Virus/genética
11.
J Infect Dis ; 224(9): 1593-1598, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33693750

RESUMEN

We demonstrate that human immunodeficiency virus (HIV) gag p24 protein is more readily detected in gut and lymph node tissues than in blood CD4+ T cells and correlates better with CD4 count during antiretroviral therapy (ART). Gut p24 levels also measurably decline with ART in natural controllers. During ART, gut p24 expression is more strongly associated both with HIV-specific CD8+ T-cell frequency and plasma soluble CD14 levels than gut HIV RNA expression. This study supports using gag p24 as a marker of HIV expression in HIV+ tissues to study effects of viral persistence and to monitor efficacy of treatment in HIV-based clearance studies.


Asunto(s)
Proteína p24 del Núcleo del VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo , Biomarcadores/sangre , Biopsia , Recuento de Linfocito CD4 , Linfocitos T CD4-Positivos/inmunología , Femenino , Proteína p24 del Núcleo del VIH/genética , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/genética , Humanos , Activación de Linfocitos
12.
Am J Transplant ; 21(5): 1765-1779, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32780519

RESUMEN

Pharmacologic inhibition of the mammalian target of rapamycin (mTOR) in the setting of renal transplantation has previously been associated with lower human immunodeficiency virus 1 (HIV-1) DNA burden, and in vitro studies suggest that mTOR inhibition may lead to HIV transcriptional silencing. Because prospective clinical trials are lacking, we conducted an open-label, single-arm study to determine the impact of the broad mTOR inhibitor, everolimus, on residual HIV burden, transcriptional gene expression profiles, and immune responses in HIV-infected adult solid organ transplant (SOT) recipients on antiretroviral therapy. Whereas everolimus therapy did not have an overall effect on cell-associated HIV-1 DNA and RNA levels in the entire cohort, participants who maintained everolimus time-averaged trough levels >5 ng/mL during the first 2 months of therapy had significantly lower RNA levels up to 6 months after the cessation of study drug. Time-averaged everolimus trough levels significantly correlated with greater inhibition of mTOR gene pathway transcriptional activity. Everolimus treatment also led to decreased PD-1 expression on certain T cell subsets. These data support the rationale for further study of the effects of mTOR inhibition on HIV transcriptional silencing in non-SOT populations, either alone or in combination with other strategies. Trial Registration: ClinicalTrials.gov NCT02429869.


Asunto(s)
Trasplante de Órganos , Preparaciones Farmacéuticas , Adulto , Everolimus/uso terapéutico , Humanos , Inmunosupresores/uso terapéutico , Diana Mecanicista del Complejo 1 de la Rapamicina , Estudios Prospectivos
13.
J Virol ; 95(2)2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33115867

RESUMEN

Latent HIV infection is the main barrier to cure, and most HIV-infected cells reside in the gut, where distinct but unknown mechanisms may promote viral latency. Transforming growth factor ß (TGF-ß), which induces the expression of CD103 on tissue-resident memory T cells, has been implicated in HIV latency. Using CD103 as a surrogate marker to identify cells that have undergone TGF-ß signaling, we compared the HIV RNA/DNA contents and cellular transcriptomes of CD103+ and CD103- CD4 T cells from the blood and rectum of HIV-negative (HIV-) and antiretroviral therapy (ART)-suppressed HIV-positive (HIV+) individuals. Like gut CD4+ T cells, circulating CD103+ cells harbored more HIV DNA than did CD103- cells but transcribed less HIV RNA per provirus. Circulating CD103+ cells also shared a gene expression profile that is closer to that of gut CD4 T cells than to that of circulating CD103- cells, with significantly lower expression levels of ribosomal proteins and transcriptional and translational pathways associated with HIV expression but higher expression levels of a subset of genes implicated in suppressing HIV transcription. These findings suggest that blood CD103+ CD4 T cells can serve as a model to study the molecular mechanisms of HIV latency in the gut and reveal new cellular factors that may contribute to HIV latency.IMPORTANCE The ability of HIV to establish a reversibly silent, "latent" infection is widely regarded as the main barrier to curing HIV. Most HIV-infected cells reside in tissues such as the gut, but it is unclear what mechanisms maintain HIV latency in the blood or gut. We found that circulating CD103+ CD4+ T cells are enriched for HIV-infected cells in a latent-like state. Using RNA sequencing (RNA-seq), we found that CD103+ T cells share a cellular transcriptome that more closely resembles that of CD4+ T cells from the gut, suggesting that they are homing to or from the gut. We also identified the cellular genes whose expression distinguishes gut CD4+ or circulating CD103+ T cells from circulating CD103- T cells, including some genes that have been implicated in HIV expression. These genes may contribute to latent HIV infection in the gut and may serve as new targets for therapies aimed at curing HIV.


Asunto(s)
Antígenos CD/metabolismo , Linfocitos T CD4-Positivos/virología , Tracto Gastrointestinal/virología , Infecciones por VIH/virología , VIH-1/fisiología , Cadenas alfa de Integrinas/metabolismo , Transcripción Genética/genética , Antivirales/uso terapéutico , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , ADN Viral/metabolismo , Tracto Gastrointestinal/inmunología , Regulación de la Expresión Génica , Infecciones por VIH/tratamiento farmacológico , Humanos , Linfocitos Intraepiteliales/metabolismo , Linfocitos Intraepiteliales/virología , Provirus/fisiología , ARN Viral/metabolismo , Proteínas Ribosómicas/genética , Subgrupos de Linfocitos T/metabolismo , Subgrupos de Linfocitos T/virología , Latencia del Virus
14.
JAMA Netw Open ; 3(10): e2018099, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33119103

RESUMEN

Importance: Persons living with HIV (PLWH) have increased risk for cardiovascular disease, and inflammation is thought to contribute to this excess risk. Production of HIV during otherwise effective antiretroviral therapy (ART) has been associated with inflammation. Objective: To determine whether higher levels of viral persistence are associated with atherosclerosis as assessed by changes in carotid artery intima-media thickness (IMT) over time. Design, Setting, and Participants: In this cohort study, intima-media thickness, a validated marker of atherosclerosis, was assessed over time in a cohort of treated PLWH with viral suppression. Cell-associated HIV DNA and RNA and change in IMT, adjusted for demographics, cardiovascular risk factors, and HIV-related factors, were examined, as well as which factors were associated with viral persistence. One hundred fifty-two PLWH with undetectable viral loads for at least 6 months before study enrollment were recruited from HIV clinics affiliated with 2 hospitals in San Francisco, California, from January 1, 2003, to December 31, 2012. Data were analyzed from February 7, 2018, to May 12, 2020. Exposures: Cell-associated HIV RNA and DNA were measured using enriched CD4+ T cells from cryopreserved peripheral blood mononuclear cells. Main Outcomes and Measures: Carotid IMT was measured at baseline and the last visit, with a mean (SD) follow-up of 4.2 (2.7) years, using high-resolution B mode ultrasonography. The main study outcomes were baseline IMT, annual IMT progression, and incident plaque, defined as a focal region of carotid IMT of greater than 1.5 mm. Results: The analysis included 152 PLWH (140 [92.1%] male; median age, 48.5 [interquartile range {IQR}, 43.3-53.7] years). Older age, smoking, medications for hypertension, higher low-density lipoprotein levels, and higher interleukin 6 levels were associated with higher baseline mean IMT, whereas cell-associated HIV DNA (estimate, -0.07% [95% CI, -6.1% to 6.4%]; P = .98), and HIV RNA levels (estimate, -0.8% [95% CI, -5.9% to 4.4%]; P = .75) were not. Levels of HIV RNA (0.017 [95% CI, 0.000-0.034] mm/y; P = .047) and HIV DNA (0.022 [95% CI, 0.001-0.044] mm/y; P = .042) were significantly associated with annual carotid artery IMT progression in unadjusted models only. Both HIV RNA (incidence risk ratio [IRR], 3.05 [95% CI, 1.49-6.27] per IQR; P = .002) and HIV DNA (IRR, 3.15 [95% CI, 1.51-6.57] per IQR; P = .002) were significantly associated with incident plaque, which remained significant after adjusting for demographics, cardiovascular risk factors, and HIV-related factors (IRR for HIV RNA, 4.05 [95% CI, 1.44-11.36] per IQR [P = .008]; IRR for HIV DNA, 3.35 [95% CI, 1.22-9.19] per IQR [P = .02]). Higher C-reactive protein levels were associated with higher cell-associated HIV RNA (estimate, 20.7% [95% CI, 0.9%-44.4%] per doubling; P = .04), whereas higher soluble CD14 levels were associated with HIV DNA (estimate, 18.6% [95% CI, 3.5%-35.8%] per 10% increase; P = .01). Higher soluble CD163 levels were associated with a higher HIV RNA:DNA ratio (difference, 63.8% [95% CI, 3.5%-159.4%]; P = .04). Conclusions and Relevance: These findings suggest that measurements of viral persistence in treated HIV disease are independently associated with incident carotid plaque development. The size and transcriptional activity of the HIV reservoir may be important contributors to HIV-associated atherosclerosis.


Asunto(s)
Aterosclerosis/etiología , Biomarcadores , Grosor Intima-Media Carotídeo/estadística & datos numéricos , Infecciones por VIH/complicaciones , Infecciones por VIH/fisiopatología , Infecciones por VIH/terapia , Carga Viral/estadística & datos numéricos , Adulto , California , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad
15.
Elife ; 92020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32990219

RESUMEN

The latent reservoir is a major barrier to HIV cure. As latently infected cells cannot be phenotyped directly, the features of the in vivo reservoir have remained elusive. Here, we describe a method that leverages high-dimensional phenotyping using CyTOF to trace latently infected cells reactivated ex vivo to their original pre-activation states. Our results suggest that, contrary to common assumptions, the reservoir is not randomly distributed among cell subsets, and is remarkably conserved between individuals. However, reservoir composition differs between tissues and blood, as do cells successfully reactivated by different latency reversing agents. By selecting 8-10 of our 39 original CyTOF markers, we were able to isolate highly purified populations of unstimulated in vivo latent cells. These purified populations were highly enriched for replication-competent and intact provirus, transcribed HIV, and displayed clonal expansion. The ability to isolate unstimulated latent cells from infected individuals enables previously impossible studies on HIV persistence.


There is no cure for the human immunodeficiency virus infection (HIV), but anti-retroviral drugs allow infected people to keep the virus at bay and lead a normal life. These drugs suppress the growth of HIV, but they do not eliminate the virus. If the treatment is interrupted, the virus bounces back within weeks in most individuals. HIV can start growing again because it hides within particular immune cells, called T cells. These infected cells stay in the infected person's body for their whole life in a dormant or "latent" state, and represent the main barrier to an HIV cure. If these cells could be eliminated or prevented from producing more virus without daily treatment, then HIV could be cured. The fact that HIV hides inside T cells has been known for a long time, but it has remained unclear exactly what kinds of T cells the virus prefers. One challenge to characterizing latently-infected cells is that there is no single protein made by them that is not also made by uninfected T cells. The latently-infected T cells are also very rare: HIV mainly attaches to a protein called CD4, but only one in about a million T cells with CD4 contain the virus. To figure out which CD4-carrying T cells in a patient sample are latently infected, the cells are extracted from the patient's body and 'reactivated' so the virus will start growing again. Unfortunately, the mixture of drugs used to reactivate the T cells changes the cells and the proteins they are producing, which obscures the features the latently-infected T cells had before reactivation. Neidleman, Luo et al. developed a new approach to trace the infected, reactivated T cells back to their state before reactivation. Using computational methods and a laboratory technique called mass cytometry, the levels of approximately 40 different proteins were measured in millions of T cells from people living with HIV. These experiments provided an 'atlas' of overall T cell features onto which each reactivated cell could be mapped. The population of latently-infected T cells exhibited common features among all the participants. Selecting a few of the most abundant proteins on the surface of the latently-infected cells allowed these cells to be physically separated from all other immune cells. In the future, this relatively pure population of infected T cells could be used to study how HIV can persist for many decades. The 'map' of these cells' features will provide a valuable resource for HIV researchers and might enable the discovery of new drugs to eliminate the latent T cells.


Asunto(s)
Linfocitos T CD4-Positivos , Infecciones por VIH , VIH-1 , Latencia del Virus/inmunología , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/virología , Separación Celular , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/inmunología , VIH-1/patogenicidad , Humanos , Inmunofenotipificación , Espectrometría de Masas , Provirus
16.
AIDS ; 34(14): 2013-2024, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-32910065

RESUMEN

OBJECTIVE: While latently HIV-infected cells have been described in the blood, it is unclear whether a similar inducible reservoir exists in the gut, where most HIV-infected cells reside. Tissue-specific environments may contribute to differences in the mechanisms that govern latent HIV infection and amenability to reactivation. We sought to determine whether HIV-infected cells from the blood and gut differ in their responses to T-cell activation and mechanistically distinct latency reversing agents (LRAs). DESIGN: Cross sectional study using samples from HIV-infected individuals (n = 11). METHODS: Matched peripheral blood mononuclear cells (PBMC) and dissociated total cells from rectum ±â€Šileum were treated ex vivo for 24 h with anti-CD3/CD28 or LRAs in the presence of antiretrovirals. HIV DNA and 'read-through', initiated, 5' elongated, completed, and multiply-spliced HIV transcripts were quantified using droplet digital PCR. RESULTS: T-cell activation increased levels of all HIV transcripts in PBMC and gut cells, and was the only treatment that increased multiply-spliced HIV RNA. Disulfiram increased initiated HIV transcripts in PBMC but not gut cells, while ingenol mebutate increased HIV transcription more in gut cells. Romidepsin increased HIV transcription in PBMC and gut cells, but the increase in transcription initiation was greater in PBMC. CONCLUSION: The gut harbors HIV-infected cells in a latent-like state that can be reversed by T-cell activation involving CD3/CD28 signaling. Histone deacetylation and protein kinase B may contribute less to HIV transcriptional initiation in the gut, whereas protein kinase C may contribute more. New LRAs or combinations are needed to induce multiply-spliced HIV and should be tested on both blood and gut.


Asunto(s)
Microbioma Gastrointestinal , Infecciones por VIH/sangre , Infecciones por VIH/virología , VIH-1/genética , VIH-1/fisiología , Latencia del Virus/fisiología , Linfocitos T CD4-Positivos , Estudios Transversales , Diterpenos , Infecciones por VIH/tratamiento farmacológico , Humanos , Leucocitos Mononucleares , Reacción en Cadena de la Polimerasa , ARN Viral , Activación Viral/genética
17.
Nature ; 585(7824): 261-267, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32848246

RESUMEN

Sustained, drug-free control of HIV-1 replication is naturally achieved in less than 0.5% of infected individuals (here termed 'elite controllers'), despite the presence of a replication-competent viral reservoir1. Inducing such an ability to spontaneously maintain undetectable plasma viraemia is a major objective of HIV-1 cure research, but the characteristics of proviral reservoirs in elite controllers remain to be determined. Here, using next-generation sequencing of near-full-length single HIV-1 genomes and corresponding chromosomal integration sites, we show that the proviral reservoirs of elite controllers frequently consist of oligoclonal to near-monoclonal clusters of intact proviral sequences. In contrast to individuals treated with long-term antiretroviral therapy, intact proviral sequences from elite controllers were integrated at highly distinct sites in the human genome and were preferentially located in centromeric satellite DNA or in Krüppel-associated box domain-containing zinc finger genes on chromosome 19, both of which are associated with heterochromatin features. Moreover, the integration sites of intact proviral sequences from elite controllers showed an increased distance to transcriptional start sites and accessible chromatin of the host genome and were enriched in repressive chromatin marks. These data suggest that a distinct configuration of the proviral reservoir represents a structural correlate of natural viral control, and that the quality, rather than the quantity, of viral reservoirs can be an important distinguishing feature for a functional cure of HIV-1 infection. Moreover, in one elite controller, we were unable to detect intact proviral sequences despite analysing more than 1.5 billion peripheral blood mononuclear cells, which raises the possibility that a sterilizing cure of HIV-1 infection, which has previously been observed only following allogeneic haematopoietic stem cell transplantation2,3, may be feasible in rare instances.


Asunto(s)
Silenciador del Gen , Infecciones por VIH/genética , Infecciones por VIH/virología , VIH-1/genética , Heterocromatina/genética , Provirus/genética , Integración Viral/genética , Latencia del Virus/genética , Adulto , Anciano , Centrómero/genética , Cromosomas Humanos Par 19/genética , ADN Satélite/genética , Femenino , Genoma Viral/genética , Infecciones por VIH/sangre , VIH-1/aislamiento & purificación , Heterocromatina/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Provirus/aislamiento & purificación , Proteínas Represoras/genética , Sitio de Iniciación de la Transcripción
18.
AIDS ; 34(5): 659-668, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-31913161

RESUMEN

OBJECTIVE: The contribution of HLA-DR+ memory CD4 T cells to the HIV reservoir during prolonged antiretroviral therapy is unclear as these cells are commonly excluded when assessing for replication-competent HIV. To address this issue, we examined the distribution of genetically intact HIV DNA within HLA-DR- and HLA-DR+ memory CD4 T cells and the RNA transcriptional profile of these cells during antiretroviral therapy. DESIGN/METHODS: Full-length DNA sequencing was used to examine the HIV DNA landscape within HLA-DR+ and HLA-DR- memory CD4 T cells. RNA quantification and sequencing was used to interrogate the relationship between HLA-DR status and HIV RNA transcription. RESULTS: HLA-DR+ CD4 T cells contained a high frequency of genetically intact HIV genomes, contributing over half of the genetically intact viral sequences to the reservoir. Expansions of genetically identical sequences were identified in all T-cell subsets, indicating that cellular proliferation maintains genetically intact and defective viral DNA during therapy. Intracellular HIV RNA levels in HLA-DR+ and HLA-DR- T cells were not statistically different by either long terminal repeat quantitative PCR quantification or single-genome RNA sequencing of the p6-RT region. CONCLUSION: The high proportion of intact viral DNA sequences in the proliferative HLA-DR+ subset suggests they are critical in maintaining HIV infection during effective therapy. As such, these cells should be included in any immune intervention targeting HIV during effective therapy.


Asunto(s)
Fármacos Anti-VIH/administración & dosificación , Infecciones por VIH/tratamiento farmacológico , VIH-1/genética , VIH-1/aislamiento & purificación , Antígenos HLA-DR/análisis , Adulto , Linfocitos T CD4-Positivos/inmunología , ADN Viral , Femenino , Antígenos HLA-DR/genética , Humanos , Memoria Inmunológica , Masculino , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN
19.
J Infect Dis ; 221(7): 1146-1155, 2020 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-31677350

RESUMEN

BACKGROUND: Identification of nonviral markers of human immunodeficiency virus (HIV) infection that increase before viral rebound during analytical treatment interruption (ATI) may affect HIV persistence research. We previously showed that HIV ribonucleic acid (RNA) is enriched in CD30+CD4+ T cells in many individuals. Here, we studied CD30+CD4+ T-cell dynamics before ATI, during ATI (before detectable plasma RNA), and after HIV rebound. METHODS: Peripheral blood mononuclear cells from 23 participants collected longitudinally from 5 Adult AIDS Clinical Trials Group studies incorporating ATI were included in this study. Flow cytometric characterization of expression of CD30 and markers of T-cell activation and exhaustion were performed along with HIV-1 RNA and deoxyribonucleic acid quantification and measurement of soluble plasma CD30 and CD30 ligand. RESULTS: The percentage of CD4+ T cells expressing CD30 significantly increased from pre-ATI to postinterruption time points before detectible viremia (1.65 mean relative increase, P = .005). Seventy-seven percent of participants experienced an increase in CD30+ cells before viral rebound. In contrast, there were no significant differences between pre-ATI and postinterruption pre-rebound time points in percentages of lymphocytes expressing CD69, CD38/HLA-DR, or PD-1 until after HIV recrudescence. CONCLUSIONS: CD30 may be a surrogate marker of early replication or viral transcriptional activity before detection by routine peripheral blood sampling.


Asunto(s)
Antirretrovirales/uso terapéutico , Linfocitos T CD4-Positivos , Infecciones por VIH , Antígeno Ki-1/sangre , Biomarcadores/sangre , Recuento de Linfocito CD4 , Linfocitos T CD4-Positivos/química , Linfocitos T CD4-Positivos/citología , Linfocitos T CD4-Positivos/inmunología , Células Cultivadas , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Humanos , Leucocitos Mononucleares/química , Leucocitos Mononucleares/inmunología , Estudios Longitudinales , ARN Viral/sangre , Carga Viral , Viremia/sangre , Privación de Tratamiento
20.
J Infect Dis ; 221(5): 744-755, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-31796951

RESUMEN

BACKGROUND: Identifying where human immunodeficiency virus (HIV) persists in people living with HIV and receiving antiretroviral therapy is critical to develop cure strategies. We assessed the relationship of HIV persistence to expression of chemokine receptors and their chemokines in blood (n = 48) and in rectal (n = 20) and lymph node (LN; n = 8) tissue collected from people living with HIV who were receiving suppressive antiretroviral therapy. METHODS: Cell-associated integrated HIV DNA, unspliced HIV RNA, and chemokine messenger RNA were quantified by quantitative polymerase chain reaction. Chemokine receptor expression on CD4+ T cells was determined using flow cytometry. RESULTS: Integrated HIV DNA levels in CD4+ T cells, CCR6+CXCR3+ memory CD4+ T-cell frequency, and CCL20 expression (ligand for CCR6) were highest in rectal tissue, where HIV-infected CCR6+ T cells accounted for nearly all infected cells (median, 89.7%). Conversely in LN tissue, CCR6+ T cells were infrequent, and there was a statistically significant association of cell-associated HIV DNA and RNA with CCL19, CCL21, and CXCL13 chemokines. CONCLUSIONS: HIV-infected CCR6+ CD4+ T cells accounted for the majority of infected cells in rectal tissue. The different relationships between HIV persistence and T-cell subsets and chemokines in rectal and LN tissue suggest that different tissue-specific strategies may be required to eliminate HIV persistence and that assessment of biomarkers for HIV persistence may not be generalizable between blood and other tissues.


Asunto(s)
Antirretrovirales/uso terapéutico , Linfocitos T CD4-Positivos/virología , Infecciones por VIH/tratamiento farmacológico , VIH/genética , Receptores CCR6/metabolismo , Recto/inmunología , Quimiocinas/metabolismo , ADN Viral/sangre , ADN Viral/genética , Femenino , Infecciones por VIH/sangre , Infecciones por VIH/virología , Humanos , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/virología , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , ARN Viral/sangre , ARN Viral/genética , Recto/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...