Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Intervalo de año de publicación
1.
Plant Dis ; 87(9): 1031-1036, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30812814

RESUMEN

An unusual and undescribed foliar blight of tall fescue was observed in a home lawn and in turf grass research plots near Griffin, GA in May and June, 2000 and 2001. Isolation from lesions yielded mycelium of a basidiomycete with hyphal characteristics (binucleate cells, absence of clamp connections) associated with Laetisaria and Limonomyces spp. Isolates from blighted tall fescue and an isolate of Limonomyces roseipellis formed a clade distinct from isolates of Laetisaria fuciformis based on ribosomal DNA sequences. These data, in conjunction with cultural morphology, indicate that the basidiomycete from tall fescue represents a biotype of Limonomyces roseipellis that lacks clamp connections. In a controlled environment, isolates of the biotype induced foliar blight in the fescue cvs. Kentucky 31 and Rebel III. Histological observations revealed that the fungus colonized leaf surfaces as branched hyphae and aggregated hyphal strands. Penetration occurred via stomatal pores on the abaxial leaf surface. Colonization of leaf tissues was inter- and intracellular, with no evidence of papilla formation in response to invading hyphae. The name "cream leaf blight" is proposed for this new disease of tall fescue.

2.
Microsc Microanal ; 9(6): 522-31, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14750987

RESUMEN

This article reports on the use of high pressure freezing followed by freeze substitution (HPF/FS) to study ultrastructural details of host-pathogen interactions in fungal diseases of plants. The specific host-pathogen systems discussed here include a powdery mildew infection of poinsettia and rust infections of daylily and Indian strawberry. The three pathogens considered here all attack the leaves of their hosts and produce specialized hyphal branches known as haustoria that invade individual host cells without killing them. We found that HPF/FS provided excellent preservation of both haustoria and host cells for all three host-pathogen systems. Preservation of fungal and host cell membranes was particularly good and greatly facilitated the detailed study of host-pathogen interfaces. In some instances, HPF/FS provided information that was not available in samples prepared for study using conventional chemical fixation. On the other hand, we did encounter various problems associated with the use of HPF/FS. Examples included freeze damage of samples, inconsistency of fixation in different samples, separation of plant cell cytoplasm from cell walls, breakage of cell walls and membranes, and splitting of thin sections. However, we believe that the outstanding preservation of ultrastructural details afforded by HPF/FS significantly outweighs these problems and we highly recommend the use of this fixation protocol for future studies of fungal host-plant interactions.


Asunto(s)
Ascomicetos/patogenicidad , Euphorbiaceae/microbiología , Micosis/patología , Enfermedades de las Plantas/microbiología , Euphorbiaceae/ultraestructura , Congelación , Microscopía Electrónica/métodos , Microscopía Electrónica de Rastreo , Hojas de la Planta/microbiología , Hojas de la Planta/ultraestructura , Presión
3.
Protoplasma ; 219(3-4): 221-6, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-12099222

RESUMEN

Transmission electron microscopy was used to examine details of the host-pathogen interface in daylily leaf cells infected by the rust fungus Puccinia hemerocallidis. Samples were prepared for study by high-pressure freezing followed by freeze substitution. The outstanding preservation of ultrastructural details afforded by this fixation protocol greatly facilitated the study of this host-pathogen interface. The extrahaustorial membrane that separated each dikaryotic haustorium from the cytoplasm of its host cell was especially well preserved and appeared almost completely smooth in profile. Large aggregations of tubular cytoplasmic elements were present near haustoria in infected host cells. Many of these tubular elements were found to be continuous with the extrahaustorial membrane and conspicuous electron-dense deposits present in the extrahaustorial matrix extended into these elements. The use of gold-conjugated wheat germ agglutinin for labeling of chitin revealed that these deposits were not part of the haustorial wall. Portions of many of the tubular elements associated with haustoria were conspicuously beaded in appearance. Some tubular elements were found to be continuous with flattened cisternae that in turn bore short beaded chains. Distinctive tubular-vesicular complexes previously reported only in cryofixed rust haustoria also were found in the haustoria of P. hemerocallidis.


Asunto(s)
Basidiomycota/ultraestructura , Hemerocallis/microbiología , Enfermedades de las Plantas/microbiología , Basidiomycota/crecimiento & desarrollo , Basidiomycota/patogenicidad , Criopreservación/métodos , Hemerocallis/ultraestructura , Interacciones Huésped-Parásitos , Microtúbulos/ultraestructura , Hojas de la Planta/citología , Hojas de la Planta/microbiología , Hojas de la Planta/ultraestructura , Plastidios/ultraestructura
4.
Phytopathology ; 92(7): 803-12, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18943278

RESUMEN

ABSTRACT Observations were made of the ultrastructure of infection and colonization of leaves of a susceptible maize inbred by Colletotrichum graminicola and by a C. graminicola pathogenicity mutant. The mutant causes no symptoms on either maize leaves or stalks. Prior evidence suggested that it is deficient in production of signal peptidase, responsible for cleavage of signal peptides from proteins destined for transport through the endoplasmic reticulum. There was no significant difference in the process of infection or colonization by the mutant and wild-type strains up to 48 h after inoculation. Both the mutant and the wild type produced globose, melanized appressoria within 24 h after inoculation on the host surface. By 36 h, both strains had penetrated the host epidermal cells directly. The host cells frequently formed papillae in response to appressoria, but these were not usually successful in preventing fungal ingress in either case. Penetration was followed by formation of irregularly shaped, swollen infection hyphae. Infection hyphae of both strains grew biotrophically for a relatively short time (less than 12 h). One or more hyphal branches was produced from each infection hypha, and these invaded adjacent mesophyll cells. Both strains of the fungus grew cell-to-cell, setting up new biotrophic interactions in each cell, between 36 and 48 h after inoculation. Papillae were frequently formed by the mesophyll cells, but these were not successful in preventing fungal ingress. The first noticeable difference between the mutant and the wild type was related to their interaction with mesophyll cells. Cells invaded by the wild type died relatively quickly, whereas those infected by the mutant appeared to survive longer. The most dramatic difference between the mutant and wild type occurred when the mutant completely failed to make a transition to necrotrophic growth, while the wild type made that switch at 48 to 72 h after inoculation. The mutant may be unable to secrete sufficient quantities of one or more proteins that are necessary to support the switch between biotrophy and necrotrophy.

5.
Phytopathology ; 90(8): 843-50, 2000 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18944505

RESUMEN

ABSTRACT Transmission electron microscopy was used to study the penetration and infection of pansy roots by Thielaviopsis basicola. Events observed in 7- to 10-day-old roots produced on moist filter paper differed slightly from those in roots from 4-week-old plants washed free of potting media prior to inoculation. By 3 h postinoculation (PI), epidermal cells of roots produced on filter paper exhibited aggregated cytoplasm and papilla formation in response to germ tube tips. The presence of callose in papillae was demonstrated using immunogold labeling. Papilla formation was not effective in preventing host cell penetration. A slender infection hypha emerged from a germ tube tip and grew through a papilla. Its tip then expanded to form a globose infection vesicle. By 6 h PI, infection hyphae emerged from infection vesicles, and invaded host cells showed signs of necrosis. By 8 h PI, infection hyphae had grown into cortical cells in spite of papilla formation in these cells. By 24 h PI, distinctive intracellular hyphae were present in necrotic cortical cells. In washed roots, most epidermal cells failed to respond to invasion. Hyphae simply grew through these cells and contacted cortical cells that exhibited aggregated cytoplasm and papillae formation. Infection structures similar to those produced in epidermal cells from roots grown on filter paper then formed in cortical cells of washed roots. The fact that T. basicola formed infection structures only in cells that responded to invasion suggests that T. basicola has a more complex relationship with its host than would be expected in a nectrotrophic pathogen. We believe that T. basicola is best described as a necrotrophic hemibiotroph.

8.
Plant Cell ; 2(8): 731-9, 1990 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-2152124

RESUMEN

Aspergillus nidulans is an ascomycetous fungus that reproduces asexually by forming multicellular conidiophores and uninucleate spores called conidia. Loss of function mutations in the abacus A (abaA) regulatory locus result in formation of aberrant conidiophores that fail to produce conidia. Wild-type conidiophores form two tiers of sterigmata. The first tier, metulae, divide to produce the second tier, phialides. Phialides are sporogenous cells that produce conidia through a specialized apical budding process. We have examined conidiophore development in an abaA- strain at the ultrastructural level. The results showed that in the mutant metulae produce supernumerary tiers of cells with metula-like, rather than phialide-like, properties. Temperature shift experiments with an abaA14ts strain demonstrated that abaA+ function induced phialide formation by the aberrant abacus cells and was continuously required for maintenance of phialide function. In the absence of abaA+ activity, metulae simply proliferated and later developmental steps never occurred. We conclude that abaA+ directs the differentiation of phialides and is continuously required for maintenance of their function.


Asunto(s)
Aspergillus nidulans/genética , Genes Fúngicos , Aspergillus nidulans/citología , Diferenciación Celular , Microscopía Electrónica , Esporas Fúngicas/citología
9.
Dev Biol ; 138(2): 499-508, 1990 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-2180753

RESUMEN

Conidium (asexual spore) differentiation in wild-type and the wet-white (wetA) mutant of Aspergillus nidulans was compared in intact chains of successively older conidia. Carbohydrate cytochemistry helped define three stages (Stages I, II, and III) of wild-type conidium maturation on the basis of changes in the ultrastructure and composition of the conidium wall. Conidia of the wetA6 mutant strain formed normally but failed to mature during Stages II and III. Specifically, the inner wall layer of wetA6 conidia did not condense during Stage II and two wall layers that stained for carbohydrates did not form during the transition to Stage III. Concomitantly, wetA6 conidia formed large cytoplasmic vacuoles and underwent lysis. The wetA gene appears to have a conidium-specific function for the modification of the conidium wall during Stages II and III. These modifications of the conidium wall are essential for the stability of mature, dormant conidia.


Asunto(s)
Aspergillus nidulans/crecimiento & desarrollo , Mutación , Aspergillus nidulans/genética , Aspergillus nidulans/ultraestructura , Pared Celular/ultraestructura , Microscopía Electrónica , Orgánulos/ultraestructura
13.
Am J Bot ; 57(8): 935-41, 1970 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-5529712
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...