Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 27(20): 27536-27545, 2019 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-31684519

RESUMEN

Bloch surface wave (BSW) can be considered as the dielectric analogue of surface plasmon polariton (SPP) with less loss since it is sustained at the surface of a truncated dielectric multilayer. As dielectric materials show nearly no ohmic loss, BSW can propagates much farther compared to SPP, and thus is beneficial for planar optical devices. In this paper, we study the spin-orbital interaction between incident beam and BSW. We demonstrate that due to the spin-orbital coupling, the near-field properties of generated BSW can be controlled with a meta-antenna structure. The meta-antenna is composed of two gold nano-antennas oriented at 45° and 135° as a near-field coupler. By careful design of the meta-antenna, the generated BSW can be guided and focused depending on the chirality of the incident beam. Three examples of meta-antennas are demonstrated for chiral sensitive focusing, directional switching and asymmetric focusing. The proposed method can be applied as a design method for low-loss on-chip photonic devices.

2.
Opt Express ; 24(24): 27554-27562, 2016 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-27906326

RESUMEN

Monolayer transition-metal dichalcogenides (TMDs) have grown as fantastic building blocks for optoelectronic applications, owing to their direct band gap, transparency, and mechanical flexibility. Since the luminescence of monolayer TMDs suffers from low light absorption and emission, surface plasmons, which confine light at subwavelength and enhance the local electric field, are utilized to boost both excitation and emission fields of TMDs, enabling strong light-matter interaction at the nano-scale. Meanwhile, radially-polarized beams (RPBs) as new and attractive excitation source have found many applications in surface plasmon polaritons, optical tweezer and so on. Here, by using RPBs, we demonstrate the photoluminescence (PL) enhancement of monolayer molybdenum disulfide (MoS2) hybridized with 210 nm-diameter gold nanoparticle (AuNP) is improved by about 1.37-fold compared with linearly-polarized beams (LPBs). Besides, the PL enhancement with RPBs depends on the size of AuNP as well. With 210nm-diameter AuNP, the PL enhancement is more than 1.5-fold higher than that with 60nm-diameter AuNP. This study highlights that RPBs are superior to LPBs for tuning the near-field system response and shows that RPBs drive a valuable avenue to further study the emerging two-dimentional materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...