Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Physiol Biochem ; 208: 108449, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38503188

RESUMEN

Five rootstock cultivars of differing vigor: vigorous ('Atlas™' and 'Bright's Hybrid® 5'), standard ('Krymsk® 86' and 'Lovell') and dwarfing ('Krymsk® 1') grafted with 'Redhaven' as the scion were studied for their impact on productivity, mid-canopy photosynthetic active radiation transmission (i.e., light availability) and internal fruit quality. Αverage yield (kg per tree) and fruit count increased significantly with increasing vigor (trunk cross sectional area, TCSA). Α detailed peach fruit quality analysis on fruit of equal maturity (based on the index of absorbance difference, IAD) coming from trees with equal crop load (no. of fruit cm-2 of TCSA) characterized the direct impact of rootstock vigor on peach internal quality [dry matter content (DMC) and soluble solids concentration (SSC)]. DMC and SSC increased significantly with decreasing vigor and increasing light availability, potentially due to reduced intra-tree shading and better light distribution within the canopy. Physiologically characterized peach fruit mesocarp was further analyzed by non-targeted metabolite profiling using gas chromatography mass spectrometry (GC-MS). Metabolite distribution was associated with rootstock vigor class, mid-canopy light availability and fruit quality characteristics. Fructose, glucose, sorbose, neochlorogenic and quinic acids, catechin and sorbitol were associated with high light environments and enhanced quality traits, while sucrose, butanoic and malic acids related to low light conditions and inferior fruit quality. These outcomes show that while rootstock genotype and vigor are influencing peach tree productivity and yield, their effect on manipulating the light environment within the canopy also plays a significant role in fruit quality development.


Asunto(s)
Frutas , Fotosíntesis , Salicilanilidas , Frutas/metabolismo , Glucosa/metabolismo , Fructosa/metabolismo
2.
Sci Rep ; 13(1): 17150, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37816810

RESUMEN

Interspecific and intraspecific competition and facilitation have been a focus of study in plant-plant interactions, but their influence on plant recruitment of soil microbes is unknown. In this greenhouse microcosm experiment, three cover crops (alfalfa, brassica, and fescue) were grown alone, in paired mixtures, and all together under different densities. For all monoculture trials, total pot biomass increased as density increased. Monoculture plantings of brassica were associated with the bacteria Azospirillum spp., fescue with Ensifer adhaerens, and alfalfa with both bacterial taxa. In the polycultures of cover crops, for all plant mixtures, total above-ground alfalfa biomass increased with density, and total above ground brassica biomass remained unchanged. For each plant mixture, differential abundances highlighted bacterial taxa which had not been previously identified in monocultures. For instance, mixtures of all three plants showed an increase in abundance of Planctomyces sp. SH-PL14 and Sandaracinus amylolyticus which were not represented in the monocultures. Facilitation was best supported for the alfalfa-fescue interaction as the total above ground biomass was the highest of any mixture. Additionally, the bulk soil microbiome that correlated with increasing plant densities showed increases in plant growth-promoting rhizobacteria such as Achromobacter xylosoxidans, Stentotrophomonas spp., and Azospirillum sp. In contrast, Agrobacterium tumefaciens, a previously known generalist phytopathogen, also increased with alfalfa-fescue plant densities. This could suggest a strategy by which, after facilitation, a plant neighbor could culture a pathogen that could be more detrimental to the other.


Asunto(s)
Festuca , Microbiota , Suelo , Medicago sativa/microbiología , Biomasa , Productos Agrícolas , Bacterias
3.
Plant Sci ; 335: 111791, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37451549

RESUMEN

The greatest threat to profitable peach production is cold damage to reproductive tissues. To better understand and mitigate cold damage in peach accurate and efficient assessment of floral bud cold hardiness (Hc) is critical. Differential thermal analysis (DTA) was optimized for efficient and precise detection of low-temperature exotherms (LTE) created by the freezing of supercooled intracellular water in peach floral primordia to determine Hc weekly during the dormant season. DTA-estimated lethal temperatures (LT) were validated against the standard oxidative browning method (OB) and in situ field damage following three freezing events. Chilling (0-7.2 °C) accumulation tracked throughout the dormant season to determine DTA-related changes across dormancy phase transitions. LTEs showed rapid acclimation of 'Redhaven' peach floral buds following the first frost of the dormant season (Tmin=-6.8 °C on November 18, 2016) and maintained similar Hc levels for 45 days through maximum Hc (LT50 =-23.9 °C recorded on January 9, 2017) and until the accumulation of 868 chilling hours was reached. Following this milestone, a significant 55% loss of LTEs upon the accumulation of the first growing degree day (Tbase=7 °C) was recoded on February 7, 2017. An LTE recovery approach, pre-exposing buds to a non-freezing low temperature (-2°C) for a period of 12 h, more than doubled the number of LTEs detected for another 27 days extending DTA use for LT prediction. The results presented herein confirm that the use of DTA is efficient and accurate to determine Hc in peach floral buds, and suggest that the LTE loss in early spring may be a signature response related to the shift from endo- into ecodormancy following two environmental temperature cues, chilling satisfaction and the first heat accumulation post chilling satisfaction.


Asunto(s)
Prunus persica , Temperatura , Frío , Agua , Análisis Diferencial Térmico
4.
Microorganisms ; 11(6)2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37374950

RESUMEN

Replant syndrome (RS) is a global problem characterized by reduced growth, production life, and yields of tree fruit/nut orchards. RS etiology is unclear, but repeated monoculture plantings are thought to develop a pathogenic soil microbiome. This study aimed to evaluate a biological approach that could reduce RS in peach (Prunus persica) orchards by developing a healthy soil bacteriome. Soil disinfection via autoclave followed by cover cropping and cover crop incorporation was found to distinctly alter the peach soil bacteriome but did not affect the RS etiology of RS-susceptible 'Lovell' peach seedlings. In contrast, non-autoclaved soil followed by cover cropping and incorporation altered the soil bacteriome to a lesser degree than autoclaving but induced significant peach growth. Non-autoclaved and autoclaved soil bacteriomes were compared to highlight bacterial taxa promoted by soil disinfection prior to growing peaches. Differential abundance shows a loss of potentially beneficial bacteria due to soil disinfection. The treatment with the highest peach biomass was non-autoclaved soil with a cover crop history of alfalfa, corn, and tomato. Beneficial bacterial species that were cultivated exclusively in the peach rhizosphere of non-autoclaved soils with a cover crop history were Paenibacillus castaneae and Bellilinea caldifistulae. In summary, the non-autoclaved soils show continuous enhancement of beneficial bacteria at each cropping phase, culminating in an enriched rhizosphere which may help alleviate RS in peaches.

5.
Plant Physiol Biochem ; 196: 1019-1031, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36898214

RESUMEN

Manipulating the crop load in peach trees determines carbon supply and optimum balance between fruit yield and quality potentials. The impact of carbon supply on peach fruit quality was assessed in three development stages (S2, S3, S4) on fruit of equal maturity from trees that were carbon (C) starved (unthinned) and sufficient (thinned). Previous studies determined that primary metabolites of peach fruit mesocarp are mainly linked with developmental processes, thus, the secondary metabolite profile was assessed using non-targeted liquid chromatography mass-spectrometry (LC-MS). Carbon sufficient (C-sufficient) fruit demonstrated superior quality attributes as compared to C-starved fruit. Early metabolic shifts in the secondary metabolome appear to prime quality at harvest. Enhanced C-availability facilitated the increased and consistent synthesis of flavonoids, like catechin, epicatechin and eriodyctiol, via the phenylpropanoid pathway, providing a link between the metabolome and fruit quality, and serving as signatures of C-sufficiency during peach fruit development.


Asunto(s)
Frutas , Prunus persica , Frutas/metabolismo , Metaboloma , Metabolismo Secundario , Cromatografía Liquida , Prunus persica/genética
6.
Cryobiology ; 101: 87-94, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33991563

RESUMEN

Freeze resistance is critical to successful dormant bud (DB) cryopreservation, and is affected by genotype, environmental conditions, dormancy phase and processing techniques. Pretreatment induced freeze resistance may contribute to more successful and efficient protocols for cryopreserving DB. Differential thermal analysis (DTA) was used to quantify the effects of cryopreservation pretreatments on freeze resistance of dormant budwood. Low temperature exotherm (LTE) profiles created by DTA could rapidly identify pretreatments that are contributing to increased freeze resistance in tree fruit species. In this study, DTA was used to help elucidate the effects of varying pretreatments (sucrose, desiccation and their combination) on peach, a model crop in tree fruit physiology that has shown little cryosurvival using the DB method in the past. Post cryopreservation recovery trials using an antimicrobial forced bud development (AFBD) protocol evaluated the ability of selected pretreatments, that improved freeze resistance based on DTA, to improve recovery of dormant budwood of various deciduous tree fruit and nut species. Precryogenic exposure to sucrose solution (5.0 M, 96 h), desiccation to 30% moisture content (MC) and their combination tested for their efficacy on improving postcryogenic viability in peach, apricot, sweet cherry, little walnut, black walnut, English walnut, apple, and pear. Among the different pretreatments tested, desiccation to 30% MC had the greatest impact on increasing freeze resistance and cryosurvival across most fruit species tested and little walnut. Gradual reduction of MC (from 40 to 25%) levels increased freeze resistance in peach (R2=0.95) and increased some recovery outcomes (leaf, shoot and bud swell), however, this was not correlated with equal cryorecovery outcomes as severe bud cracking was observed. Overall, our approach linking freeze resistance and preconditioning treatments could help establish efficient species-specific cryopreservation protocols for a number of important temperate woody crops which could be recovered as complete plants by coupling AFBD and plant tissue culture.


Asunto(s)
Criopreservación , Frutas , Criopreservación/métodos , Congelación , Brotes de la Planta , Árboles
7.
Food Chem ; 335: 127626, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-32739812

RESUMEN

The development of precise and reliable near infrared spectroscopy (NIRS)-based non-destructive tools to assess physicochemical properties of fleshy fruit has been challenging. A novel crop load × fruit developmental stage protocol for multivariate NIRS-based prediction models calibration to non-destructively assess peach internal quality and maturity was followed. Regression statistics of the prediction models highlighted that dry matter content (DMC, R2 = 0.98, RMSEP = 0.41%), soluble solids concentration (SSC, R2 = 0.96, RMSEP = 0.58%) and index of absorbance difference (IAD, R2 = 0.96, RMSEP = 0.08) could be estimated accurately with a single scan during fruit growth and development. Thus, the impact of preharvest factors such as crop load and canopy position on peach quality and maturity was evaluated. Large-scale field validation showed that heavier crop loads reduced peach quality (DMC, SSC) and delayed maturity (IAD) and upper canopy position advanced both mainly in the moderate crop loads. This calibration protocol can enhance NIRS adaptation across tree fruit supply chain.


Asunto(s)
Calidad de los Alimentos , Frutas/química , Frutas/crecimiento & desarrollo , Prunus persica/química , Prunus persica/crecimiento & desarrollo , Espectroscopía Infrarroja Corta , Calibración , Análisis de Regresión
8.
Plant Physiol Biochem ; 157: 416-431, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33202321

RESUMEN

Crop load management is an important preharvest factor to balance yield, quality, and maturation in peach. However, few studies have addressed how preharvest factors impact metabolism on fruit of equal maturity. An experiment was conducted to understand how carbon competition impacts fruit internal quality and metabolism in 'Cresthaven' peach trees by imposing distinct thinning severities. Fruit quality was evaluated at three developmental stages (S2, S3, S4), while controlling for equal maturity using non-destructive visual to near-infrared spectroscopy. Non-targeted metabolite profiling was used to characterize fruit at each developmental stage from trees that were unthinned (carbon starvation) or thinned (carbon sufficiency). Carbon sufficiency resulted in significantly higher fruit dry matter content and soluble solids concentration at harvest when compared to the carbon starved, underscoring the true impact of carbon manipulation on fruit quality. Significant differences in the fruit metabolome between treatments were observed at S2 when phenotypes were similar, while less differences were observed at S4 when the carbon sufficient fruit exhibited a superior phenotype. This suggests a potential metabolic priming effect on fruit quality when carbon is sufficiently supplied during early fruit growth and development. In particular, elevated levels of catechin may suggest a link between secondary/primary metabolism and fruit quality development.


Asunto(s)
Carbono/metabolismo , Frutas/crecimiento & desarrollo , Metaboloma , Prunus persica/metabolismo , Frutas/metabolismo
9.
Cryobiology ; 92: 241-247, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-32004576

RESUMEN

Dormant bud cryogenic preservation is a cost- and labor-efficient method of genetic resource backup compared to in vitro derived meristem shoots cryopreservation. While protocols have been developed for cryopreserving apple dormant buds, effective and reproducible protocols are yet to be developed for several temperate fruit and nut species. Dormant bud cryopreservation typically requires material to be grafted to evaluate viability and recover a plant. Forced bud development has been used on a very limited scale for cryostored dormant budwood recovery, however, it provides a labor-efficient alternative viability assessment. To increase the utility of this approach, regrowth must be optimized to allow complete plant recovery. We hypothesized that bacterial attacks are limiting regrowth, thus, an antimicrobial forcing solution can maximize regrowth potential. This study examined the effects of an antimicrobial forcing solution (8-hydroxyquinoline citrate and sucrose, 8-HQC) on the cryosurvival and recovery of dormant buds of fruit (Malus x domestica, Prunus armeniaca, Prunus avium, Prunus persica, Pyrus communis), and nut species (Juglans regia, Juglans nigra, Juglans microcarpa). Recovery and shoot development were significantly improved for all the fruit and one nut species (J. microcarpa) treated with the 8-HQC, compared to standard recovery under high humidity alone (P < 0.001). Additionally, this post cryo recovery approach led to successful in vitro shoot tip establishment across all surviving fruit species. 8-HQC embedded forced bud development method increased viability and efficiency for existing cryostored material and can be used as a benchmark to develop protocols for different crops that could potentially lead to complete plant recovery.


Asunto(s)
Antiinfecciosos/farmacología , Criopreservación/métodos , Frutas/microbiología , Oxiquinolina/farmacología , Brotes de la Planta/crecimiento & desarrollo , Crioprotectores/química , Crioprotectores/farmacología , Frutas/crecimiento & desarrollo , Malus , Meristema/citología , Árboles/citología
10.
BMC Plant Biol ; 18(1): 358, 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30558543

RESUMEN

BACKGROUND: Understanding the mechanisms involved in climacteric fruit ripening is key to improve fruit harvest quality and postharvest performance. Kiwifruit (Actinidia deliciosa cv. 'Hayward') ripening involves a series of metabolic changes regulated by ethylene. Although 1-methylcyclopropene (1-MCP, inhibitor of ethylene action) or ozone (O3) exposure suppresses ethylene-related kiwifruit ripening, how these molecules interact during ripening is unknown. RESULTS: Harvested 'Hayward' kiwifruits were treated with 1-MCP and exposed to ethylene-free cold storage (0 °C, RH 95%) with ambient atmosphere (control) or atmosphere enriched with O3 (0.3 µL L- 1) for up to 6 months. Their subsequent ripening performance at 20 °C (90% RH) was characterized. Treatment with either 1-MCP or O3 inhibited endogenous ethylene biosynthesis and delayed fruit ripening at 20 °C. 1-MCP and O3 in combination severely inhibited kiwifruit ripening, significantly extending fruit storage potential. To characterize ethylene sensitivity of kiwifruit following 1-MCP and O3 treatments, fruit were exposed to exogenous ethylene (100 µL L- 1, 24 h) upon transfer to 20 °C following 4 and 6 months of cold storage. Exogenous ethylene treatment restored ethylene biosynthesis in fruit previously exposed in an O3-enriched atmosphere. Comparative proteomics analysis showed separate kiwifruit ripening responses, unraveled common 1-MCP- and O3-dependent metabolic pathways and identified specific proteins associated with these different ripening behaviors. Protein components that were differentially expressed following exogenous ethylene exposure after 1-MCP or O3 treatment were identified and their protein-protein interaction networks were determined. The expression of several kiwifruit ripening related genes, such as 1-aminocyclopropane-1-carboxylic acid oxidase (ACO1), ethylene receptor (ETR1), lipoxygenase (LOX1), geranylgeranyl diphosphate synthase (GGP1), and expansin (EXP2), was strongly affected by O3, 1-MCP, their combination, and exogenously applied ethylene. CONCLUSIONS: Our findings suggest that the combination of 1-MCP and O3 functions as a robust repressive modulator of kiwifruit ripening and provide new insight into the metabolic events underlying ethylene-induced and ethylene-independent ripening outcomes.


Asunto(s)
Actinidia/fisiología , Ciclopropanos/farmacología , Etilenos/farmacología , Frutas/fisiología , Ozono/farmacología , Actinidia/efectos de los fármacos , Etilenos/metabolismo , Almacenamiento de Alimentos , Frutas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ozono/metabolismo , Proteínas de Plantas/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
11.
Plant Physiol Biochem ; 127: 478-484, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29705568

RESUMEN

Sweet cherry, a non-climacteric and highly perishable fruit, is usually cold-stored during post-harvest period to prevent senescence; therefore, metabolic profiling in response to cold storage in sweet cherry is of economic and scientific interest. In the present work, metabolic analysis was performed in fruit and stem tissues to determine the metabolic dynamics associated with cold storage in response to 1-methylcyclopropene (1-MCP), an ethylene-action inhibitor, and modified atmosphere packaging (MAP). Fruit (cv. Regina) following harvest were treated with 1-MCP and then cold-stored (0 °C, relative humidity 95%) for 1 month in the presence or in the absence of MAP and subsequently maintained at 20 °C for up to 2 days. Physiological analysis suggested that cold storage stimulated anthocyanin production, respiration rate and stem browning. Cherry stem exposed to 1-MCP displayed senescence symptoms as demonstrated by the higher stem browning and the lower stem traction force while MAP treatment considerably altered these features. The metabolic profile of fruits and stems just following cold storage was distinctly different from those analyzed at harvest. Marked tissue-specific differences were also detected among sweet cherries exposed to individual and to combined 1-MCP and MAP treatments, notably for amino acid biosynthesis. The significance of some of these metabolites as cold storage hallmarks is discussed in the context of the limited knowledge on the 1-MCP and MAP response mechanisms at the level of cherry fruit and stem tissues. Overall, this study provides the first steps toward understanding tissue-specific postharvest behavior in sweet cherry under various conditions.


Asunto(s)
Frío , Ciclopropanos/farmacología , Conservación de Alimentos , Frutas/metabolismo , Metabolómica , Tallos de la Planta/metabolismo , Prunus avium/metabolismo
12.
Sci Rep ; 7(1): 11358, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28900303

RESUMEN

Cold storage of fruit may induce the physiological disorder chilling injury (CI); however, the molecular basis of CI development remains largely unexplored. Simulated conditions of CI priming and suppression provided an interesting experimental system to study cold response in fruit. Peaches (cv. June Gold) at the commercial harvest (CH) or tree-ripe (TR) stages were immediately exposed to cold treatment (40 d, 0 °C) and an additional group of CH fruits were pre-conditioned 48 h at 20 °C prior to low-temperature exposure (pre-conditioning, PC). Following cold treatment, the ripening behaviour of the three groups of fruits was analysed (3 d, 20 °C). Parallel proteomic, metabolomic and targeted transcription comparisons were employed to characterize the response of fruit to CI expression. Physiological data indicated that PC suppressed CI symptoms and induced more ethylene biosynthesis than the other treatments. Differences in the protein and metabolic profiles were identified, both among treatments and before and after cold exposure. Transcriptional expression patterns of several genes were consistent with their protein abundance models. Interestingly, metabolomic and gene expression results revealed a possible role for valine and/or isoleucine in CI tolerance. Overall, this study provides new insights into molecular changes during fruit acclimation to cold environment.


Asunto(s)
Aclimatación , Respuesta al Choque por Frío , Frutas/genética , Frutas/metabolismo , Prunus persica/genética , Prunus persica/metabolismo , Etilenos/biosíntesis , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Fenotipo , Proteoma , Proteómica/métodos , Estrés Fisiológico , Temperatura , Transcriptoma
13.
Front Plant Sci ; 7: 1689, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27891143

RESUMEN

The role of environment in fruit physiology has been established; however, knowledge regarding the effect of altitude in fruit quality traits is still lacking. Here, skin tissue quality characters were analyzed in peach fruit (cv. June Gold), harvested in 16 orchards located in low (71.5 m mean), or high (495 m mean) altitutes sites. Data indicated that soluble solids concentration and fruit firmness at commercial harvest stage were unaffected by alitute. Peach grown at high-altitude environment displayed higher levels of pigmentation and specific antioxidant-related activity in their skin at the commercial harvest stage. Skin extracts from distinct developmental stages and growing altitudes exhibited different antioxidant ability against DNA strand-scission. The effects of altitude on skin tissue were further studied using a proteomic approach. Protein expression analysis of the mature fruits depicted altered expression of 42 proteins that are mainly involved in the metabolic pathways of defense, primary metabolism, destination/storage and energy. The majority of these proteins were up-regulated at the low-altitude region. High-altitude environment increased the accumulation of several proteins, including chaperone ClpC, chaperone ClpB, pyruvate dehydrogenase E1, TCP domain class transcription factor, and lipoxygenase. We also discuss the altitude-affected protein variations, taking into account their potential role in peach ripening process. This study provides the first characterization of the peach skin proteome and helps to improve our understanding of peach's response to altitude.

14.
Front Plant Sci ; 7: 120, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26913040

RESUMEN

Kiwifruit [Actinidia deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson, cv. "Hayward"] is classified as climacteric fruit and the initiation of endogenous ethylene production following harvest is induced by exogenous ethylene or chilling exposure. To understand the biological basis of this "dilemma," kiwifruit ripening responses were characterized at 20°C following treatments with exogenous ethylene (100 µL L(-1), 20°C, 24 h) or/and chilling temperature (0°C, 10 days). All treatments elicited kiwifruit ripening and induced softening and endogenous ethylene biosynthesis, as determined by 1-aminocyclopropane-1-carboxylic acid (ACC) content and ACC synthase (ACS) and ACC oxidase (ACO) enzyme activities after 10 days of ripening at 20°C. Comparative proteomic analysis using two-dimensional gel electrophoresis (2DE-PAGE) and nanoscale liquid chromatography coupled to tandem mass spectrometry (nanoLC-MS/MS) revealed 81 kiwifruit proteins associated with ripening. Thirty-one kiwifruit proteins were identified as commonly regulated by the three treatments accompanied by dynamic changes of 10 proteins specific to exogenous ethylene, 2 to chilling treatment, and 12 to their combination. Ethylene and/or chilling-responsive proteins were mainly involved in disease/defense, energy, protein destination/storage, and cell structure/cell wall. Interactions between the identified proteins were demonstrated by bioinformatics analysis, allowing a more complete insight into biological pathways and molecular functions affected by ripening. The present approach provides a quantitative basis for understanding the ethylene- and chilling-induced kiwifruit ripening and climacteric fruit ripening in general.

15.
Front Plant Sci ; 6: 959, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26617616

RESUMEN

Sweet cherry fruits (Prunus avium cvs. 'Canada Giant', 'Ferrovia') were harvested at commercial maturity stage and analyzed at harvest and after maintenance at room temperature (storage at ∼20°C, shelf life) for 1, 2, 4, 6, and 8 days, respectively. Fruit were initially analyzed for respiration rate, qualitative attributes and textural properties: 'Canada Giant' fruit were characterized by higher weight losses and stem browning index, being more intense over the late stages of shelf life period; meanwhile 'Ferrovia' possessed appreciably better performance even after extended shelf life period. A gradual decrease of respiration rate was monitored in both cultivars, culminated after 8 days at 20°C. The sweet cherry fruit nutraceutical profile was monitored using an array of instrumental techniques (spectrophotometric assays, HPLC, (1)H-NMR). Fruit antioxidant capacity was enhanced with the progress of shelf life period, concomitant with the increased levels of total anthocyanin and of phenolic compounds. 'Ferrovia' fruit presented higher contents of neochlorogenic acid and p-coumaroylquinic acid throughout the shelf life period. We further developed an (1)H-NMR method that allows the study of primary and secondary metabolites in a single running, without previous separation and isolation procedures. Diagnostic peaks were located in the aliphatic region for sugars and organic acids, in the aromatic region for phenolic compounds and at 8.2-8.6 ppm for anthocyanins. This NMR-based methodology provides a unifying tool for quantitative and qualitative characterization of metabolite changes of sweet cherry fruits; it is also expected to be further exploited for monitoring temporal changes in other fleshy fruits.

16.
Ann Bot ; 116(4): 649-62, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26159933

RESUMEN

BACKGROUND AND AIMS: Despite their importance in many aspects of plant physiology, information about the function of oxidative and, particularly, of nitrosative signalling in fruit biology is limited. This study examined the possible implications of O3 and sodium nitroprusside (SNP) in kiwifruit ripening, and their interacting effects. It also aimed to investigate changes in the kiwifruit proteome in response to SNP and O3 treatments, together with selected transcript analysis, as a way to enhance our understanding of the fruit ripening syndrome. METHODS: Kiwifruits following harvest were pre-treated with 100 µm SNP, then cold-stored (0 °C, relative humidity 95 %) for either 2 or 6 months in the absence or in the presence of O3 (0·3 µL L(-1)), and subsequently were allowed to ripen at 20 °C. The ripening behaviour of fruit was characterized using several approaches: together with ethylene production, several genes, enzymes and metabolites involved in ethylene biosynthesis were analysed. Kiwifruit proteins were identified using 2-D electrophoresis coupled with nanoliquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Expression patterns of kiwifruit ripening-related genes were also analysed using real-time quantitative reverse transcription-PCR (RT-qPCR). KEY RESULTS: O3 treatment markedly delayed fruit softening and depressed the ethylene biosynthetic mechanism. Although SNP alone was relatively ineffective in regulating ripening, SNP treatment prior to O3 exposure attenuated the O3-induced ripening inhibition. Proteomic analysis revealed a considerable overlap between proteins affected by both SNP and O3. Consistent with this, the temporal dynamics in the expression of selected kiwifruit ripening-related genes were noticeably different between individual O3 and combined SNP and O3 treatments. CONCLUSIONS: This study demonstrates that O3-induced ripening inhibition could be reversed by SNP and provides insights into the interaction between oxidative and nitrosative signalling in climacteric fruit ripening.


Asunto(s)
Actinidia/efectos de los fármacos , Nitroprusiato/farmacología , Ozono/farmacología , Proteínas de Plantas/genética , Proteoma , Actinidia/crecimiento & desarrollo , Frutas/efectos de los fármacos , Frutas/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/metabolismo
17.
Front Plant Sci ; 6: 316, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26029222

RESUMEN

Japanese plums are classified as climacteric; however, some economically important cultivars selected in California produce very little ethylene and require long ripening both "on" and "off" the tree to reach eating-ripe firmness. To unravel the ripening behavior of different Japanese plum cultivars, ripening was examined in the absence (air) or in the presence of ethylene or propylene (an ethylene analog) following a treatment or not with 1-methylcyclopropene (1-MCP, an ethylene action inhibitor). Detailed physiological studies revealed for the first time three distinct ripening types in plum fruit: climacteric, suppressed-climacteric, and non-climacteric. Responding to exogenous ethylene or propylene, the slow-softening supressed-climacteric cultivars produced detectable amounts of ethylene, in contrast to the novel non-climacteric cultivar that produced no ethylene and softened extremely slowly. Genetic analysis using microsatellite markers produced identical DNA profiles for the climacteric cultivars "Santa Rosa" and "July Santa Rosa," the suppressed-climacteric cultivars "Late Santa Rosa," "Casselman," and "Roysum" and the novel non-climacteric "Sweet Miriam," as expected since historic records present most of these cultivars as bud-sport mutations derived initially from "Santa Rosa." This present study provides a novel fruit system to address the molecular basis of ripening and to develop markers that assist breeders in providing high-quality stone fruit cultivars that can remain "on-tree," increasing fruit flavor, saving harvesting costs, and potentially reducing the need for low-temperature storage during postharvest handling.

18.
Plant Sci ; 229: 76-85, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25443835

RESUMEN

Ozone treatments are used to preserve quality during cold storage of commercially important fruits due to its ethylene oxidizing capacity and its antimicrobial attributes. To address whether or not ozone also modulates ripening by directly affecting fruit physiology, kiwifruit (Actinidia deliciosa cv. 'Hayward') were stored in very low ethylene atmosphere at 0°C (95% RH) in air (control) or in the presence of ozone (0.3µLL(-1)) for 2 or 4 months and subsequently ripened at 20°C (90% RH) for up to 8d. Ozone-treated kiwifruit showed a significant delay of ripening during maintenance at 20°C, accompanied by a marked decrease in ethylene biosynthesis due to inhibited AdACS1 and AdACO1 expression and reduced ACC synthase (ACS) and ACC oxidase (ACO) enzyme activity. Furthermore, ozone-treated fruit exhibited a marked reduction in flesh softening and cell wall disassembly. This effect was associated with reduced cell wall swelling and pectin and neutral sugar solubilization and was correlated with the inhibition of cell wall degrading enzymes activity, such as polygalacturonase (PG) and endo-1,4-ß-glucanase/1,4-ß-glucosidase (EGase/glu). Conclusively, the present study indicated that ozone may exert major residual effects in fruit ripening physiology and suggested that ethylene biosynthesis and cell walls turnover are specifically targeted by ozone.


Asunto(s)
Actinidia/citología , Actinidia/crecimiento & desarrollo , Pared Celular/metabolismo , Etilenos/biosíntesis , Frutas/crecimiento & desarrollo , Ozono/farmacología , Actinidia/efectos de los fármacos , Actinidia/genética , Aminoácido Oxidorreductasas/genética , Aminoácido Oxidorreductasas/metabolismo , Aminoácidos Cíclicos/metabolismo , Carbohidratos/análisis , Respiración de la Célula/efectos de los fármacos , Pared Celular/efectos de los fármacos , Pared Celular/enzimología , Frutas/efectos de los fármacos , Frutas/genética , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Liasas/antagonistas & inhibidores , Liasas/genética , Liasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Solubilidad
19.
Plant Sci ; 210: 46-52, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23849112

RESUMEN

Non-chilling peel pitting (NCPP), a storage disorder resulting in the formation of depressed areas in the peel of many citrus cultivars, is reduced by ethylene treatments. We hypothesized that this effect may be associated with biochemical changes of cell wall components. Therefore, we extracted cell wall material from albedo and flavedo tissues of 'Navelate' oranges stored in air, conditioned with ethylene (2µLL(-1)) for 4 days and subsequently transferred to air, or continuously stored in an ethylene-enriched atmosphere (2µLL(-1)). Uronic acids and neutral sugars were extracted into five fractions enriched in specific wall polymers namely water-, CDTA-, Na2CO3-, and 1 and 4M KOH-soluble fractions. Pectin insolubilization was found in control fruit at long storage times. Ethylene treatments, alleviating NCPP, increased polyuronide solubility in the albedo and had a slight effect on the flavedo. Ethylene-treated fruit showed greater content of water-soluble neutral sugars and a larger proportion of hemicelluloses readily extractable with 1M KOH, with a concomitant reduction in the 4M KOH-soluble fraction. This suggests that the protective role of ethylene on NCPP is associated with an increased solubilization of the wall of albedo cells.


Asunto(s)
Pared Celular/efectos de los fármacos , Citrus sinensis/efectos de los fármacos , Etilenos/farmacología , Frutas/efectos de los fármacos , Pectinas/metabolismo , Metabolismo de los Hidratos de Carbono , Carbohidratos , Pared Celular/metabolismo , Celulosa/metabolismo , Citrus sinensis/fisiología , Frío , Frutas/fisiología , Polisacáridos/metabolismo , Solubilidad , Ácidos Urónicos/análisis , Ácidos Urónicos/metabolismo
20.
J Exp Bot ; 63(7): 2449-64, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22268155

RESUMEN

Post-harvest ozone application has recently been shown to inhibit the onset of senescence symptoms on fleshy fruit and vegetables; however, the exact mechanism of action is yet unknown. To characterize the impact of ozone on the post-harvest performance of kiwifruit (Actinidia deliciosa cv. 'Hayward'), fruits were cold stored (0 °C, 95% relative humidity) in a commercial ethylene-free room for 1, 3, or 5 months in the absence (control) or presence of ozone (0.3 µl l(-1)) and subsequently were allowed to ripen at a higher temperature (20 °C), herein defined as the shelf-life period, for up to 12 days. Ozone blocked ethylene production, delayed ripening, and stimulated antioxidant and anti-radical activities of fruits. Proteomic analysis using 1D-SDS-PAGE and mass spectrometry identified 102 kiwifruit proteins during ripening, which are mainly involved in energy, protein metabolism, defence, and cell structure. Ripening induced protein carbonylation in kiwifruit but this effect was depressed by ozone. A set of candidate kiwifruit proteins that are sensitive to carbonylation was also discovered. Overall, the present data indicate that ozone improved kiwifruit post-harvest behaviour, thus providing a first step towards understanding the active role of this molecule in fruit ripening.


Asunto(s)
Actinidia/efectos de los fármacos , Ozono/farmacología , Proteínas de Plantas/genética , Actinidia/química , Actinidia/genética , Actinidia/metabolismo , Antioxidantes/metabolismo , Etilenos/metabolismo , Frutas/efectos de los fármacos , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteómica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...