Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Lab Invest ; 102(8): 814-825, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35437316

RESUMEN

As the coronavirus disease 2019 (COVID-19) pandemic evolves, much evidence implicates the heart as a critical target of injury in patients. The mechanism(s) of cardiac involvement has not been fully elucidated, although evidence of direct virus-mediated injury, thromboembolism with ischemic complications, and cytokine storm has been reported. We examined suggested mechanisms of COVID-19-associated heart failure in 21 COVID-19-positive decedents, obtained through standard autopsy procedure, compared to clinically matched controls and patients with various etiologies of viral myocarditis. We developed a custom tissue microarray using regions of pathological interest and interrogated tissues via immunohistochemistry and in situ hybridization. Severe acute respiratory syndrome coronavirus 2 was detected in 16/21 patients, in cardiomyocytes, the endothelium, interstitial spaces, and percolating adipocytes within the myocardium. Virus detection typically corresponded with troponin depletion and increased cleaved caspase-3. Indirect mechanisms of injury-venous and arterial thromboses with associated vasculitis including a mixed inflammatory infiltrate-were also observed. Neutrophil extracellular traps (NETs) were present in the myocardium of all COVID-19 patients, regardless of injury degree. Borderline myocarditis (inflammation without associated myocyte injury) was observed in 19/21 patients, characterized by a predominantly mononuclear inflammatory infiltrate. Edema, inflammation of percolating adipocytes, lymphocytic aggregates, and large septal masses of inflammatory cells and platelets were observed as defining features, and myofibrillar damage was evident in all patients. Collectively, COVID-19-associated cardiac injury was multifactorial, with elevated levels of NETs and von Willebrand factor as defining features of direct and indirect viral injury.


Asunto(s)
COVID-19 , Miocarditis , Autopsia , COVID-19/complicaciones , Humanos , Inflamación , Miocitos Cardíacos
3.
Lab Invest ; 102(1): 14-24, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34608239

RESUMEN

The prevalence and contribution of cardiotropic viruses to various expressions of heart failure are increasing, yet primarily underappreciated and underreported due to variable clinical syndromes, a lack of consensus diagnostic standards and insufficient clinical laboratory tools. In this study, we developed an advanced methodology for identifying viruses across a spectrum of heart failure patients. We designed a custom tissue microarray from 78 patients with conditions commonly associated with virus-related heart failure, conditions where viral contribution is typically uncertain, or conditions for which the etiological agent remains suspect but elusive. Subsequently, we employed advanced, highly sensitive in situ hybridization to probe for common cardiotropic viruses: adenovirus 2, coxsackievirus B3, cytomegalovirus, Epstein-Barr virus, hepatitis C and E, influenza B and parvovirus B19. Viral RNA was detected in 46.4% (32/69) of heart failure patients, with 50% of virus-positive samples containing more than one virus. Adenovirus 2 was the most prevalent, detected in 27.5% (19/69) of heart failure patients, while in contrast to previous reports, parvovirus B19 was detected in only 4.3% (3/69). As anticipated, viruses were detected in 77.8% (7/9) of patients with viral myocarditis and 37.5% (6/16) with dilated cardiomyopathy. Additionally, viruses were detected in 50% of patients with coronary artery disease (3/6) and hypertrophic cardiomyopathy (2/4) and in 28.6% (2/7) of transplant rejection cases. We also report for the first time viral detection within a granulomatous lesion of cardiac sarcoidosis and in giant cell myocarditis, conditions for which etiological agents remain unknown. Our study has revealed a higher than anticipated prevalence of cardiotropic viruses within cardiac muscle tissue in a spectrum of heart failure conditions, including those not previously associated with a viral trigger or exacerbating role. Our work forges a path towards a deeper understanding of viruses in heart failure pathogenesis and opens possibilities for personalized patient therapeutic approaches.


Asunto(s)
Insuficiencia Cardíaca/patología , Herpesvirus Humano 4/genética , Parvovirus B19 Humano/genética , Virosis/diagnóstico , Adulto , Cardiomiopatía Dilatada/patología , Cardiomiopatía Dilatada/virología , Estudios de Cohortes , Femenino , Insuficiencia Cardíaca/virología , Herpesvirus Humano 4/fisiología , Humanos , Hibridación in Situ/métodos , Masculino , Persona de Mediana Edad , Miocarditis/patología , Miocarditis/virología , Parvovirus B19 Humano/fisiología , ARN Viral/genética , ARN Viral/metabolismo , Sensibilidad y Especificidad , Análisis de Matrices Tisulares/métodos , Virosis/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...