Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 22(21)2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36365850

RESUMEN

A digital twin for a multifunctional technology for flexible manufacturing on an assembly, disassembly, and repair mechatronics line (A/D/RML), assisted by a complex autonomous system (CAS), is presented in the paper. The hardware architecture consists of the A/D/RML and a six-workstation (WS) mechatronics line (ML) connected to a flexible cell (FC) and equipped with a six-degree of freedom (DOF) industrial robotic manipulator (IRM). The CAS has in its structure two driving wheels and one free wheel (2DW/1FW)-wheeled mobile robot (WMR) equipped with a 7-DOF robotic manipulator (RM). On the end effector of the RM, a mobile visual servoing system (eye-in-hand MVSS) is mounted. The multifunctionality is provided by the three actions, assembly, disassembly, and repair, while the flexibility is due to the assembly of different products. After disassembly or repair, CAS picks up the disassembled components and transports them to the appropriate storage depots for reuse. Disassembling or repairing starts after assembling, and the final assembled product fails the quality test. The virtual world that serves as the digital counterpart consists of tasks assignment, planning and synchronization of A/D/RML with integrated robotic systems, IRM, and CAS. Additionally, the virtual world includes hybrid modeling with synchronized hybrid Petri nets (SHPN), simulation of the SHPN models, modeling of the MVSS, and simulation of the trajectory-tracking sliding-mode control (TTSMC) of the CAS. The real world, as counterpart of the digital twin, consists of communication, synchronization, and control of A/D/RML and CAS. In addition, the real world includes control of the MVSS, the inverse kinematic control (IKC) of the RM and graphic user interface (GUI) for monitoring and real-time control of the whole system. The "Digital twin" approach has been designed to meet all the requirements and attributes of Industry 4.0 and beyond towards Industry 5.0, the target being a closer collaboration between the human operator and the production line.


Asunto(s)
Procedimientos Quirúrgicos Robotizados , Robótica , Humanos , Simulación por Computador , Fenómenos Biomecánicos , Industrias
2.
Sensors (Basel) ; 19(15)2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-31344960

RESUMEN

The aim of this paper is to reverse an assembly line, to be able to perform disassembly, using two complex autonomous systems (CASs). The disassembly is functioning only in case of quality default identified in the final product. The CASs are wheeled mobile robots (WMRs) equipped with robotic manipulators (RMs), working in parallel or collaboratively. The reversible assembly/disassembly mechatronics line (A/DML) assisted by CASs has a specific typology and is modelled by specialized hybrid instruments belonging to the Petri nets class, precisely synchronized hybrid Petri nets (SHPN). The need of this type of models is justified by the necessity of collaboration between the A/DML and CASs, both having characteristics and physical constraints that should be considered and to make all systems compatible. Firstly, the paper proposes the planning and scheduling of tasks necessary in modelling stage as well as in real time control. Secondly, two different approaches are proposed, related to CASs collaboration: a parallel approach with two CASs have simultaneous actions: one is equipped with robotic manipulator, used for manipulation, and the other is used for transporting. This approach is correlated with industrial A/D manufacturing lines where have to transport and handle weights in a wide range of variation. The other is a collaborative approach, A/DML is served by two CASs used for manipulation and transporting, both having simultaneous movements, following their own trajectories. One will assist the disassembly in even, while the other in odd workstations. The added value of this second approach consists in the optimization of a complete disassembly cycle. Thirdly, it is proposed in the paper the real time control of mechatronics line served by CASs working in parallel, based on the SHPN model. The novelty of the control procedure consists in the use of the synchronization signals, in absence of the visual servoing systems, for a precise positioning of the CASs serving the reversible mechatronics line.


Asunto(s)
Sistemas de Computación/tendencias , Robótica/métodos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...