Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Water Res ; 258: 121760, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38795547

RESUMEN

The photo-Fenton process is effective for pathogen removal, and its low-cost versions can be applied in resource-poor contexts. Herein, a photo-Fenton-like system was proposed using low concentrations of iron oxides (hematite and magnetite) and persulfates (peroxymonosulfate - PMS, and peroxydisulfate - PDS), which exhibited excellent inactivation performance towards MS2 bacteriophages. In the presence of bacteria, MS2 inactivation was inhibited in H2O2 and PDS systems but promoted in PMS-involved systems. The inactivation efficacy of all the proposed systems for mixed bacteria and viruses was greater than that of the sole bacteria, showing potential practical applications. The inactivation performance of humic acid-incorporated iron oxides mediating photo-Fenton-like processes was also studied; except for the PMS-involved system, the inactivation efficacy of the H2O2- and PDS-involved systems was inhibited, but the PDS-involved system was still acceptable (< 2 h). Reactive species exploration experiments indicated that ·OH was the main radical in the H2O2 and PDS systems, whereas 1O2 played a key role in the PMS-involved system. In summary, hematite- and magnetite-mediated persulfate-assisted photo-Fenton-like systems at low concentrations can be used as alternatives to the photo-Fenton process for virus inactivation in sunny areas, providing more possibilities for point-of-use drinking water treatment in developing countries.


Asunto(s)
Compuestos Férricos , Peróxido de Hidrógeno , Peróxido de Hidrógeno/química , Compuestos Férricos/química , Concentración de Iones de Hidrógeno , Purificación del Agua/métodos , Sulfatos/química , Peróxidos/química
2.
Sci Total Environ ; 931: 172740, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38677424

RESUMEN

Pathogens in drinking water remain a challenge for human health, photo-Fenton process is a promising technique for pathogen inactivation, herein, two common iron oxides, hematite and magnetite mediate persulfate (peroxymonosulfate-PMS - and peroxydisulfate-PDS) involved photo-Fenton-like processes were constructed for E. coli inactivation, and the inactivation performance was investigated and compared with the photo-Fenton process under a low intensity UVA irradiation. Results indicated that with a low dose of iron oxides (1 mg/L) and inorganic peroxides (10 mg/L), PMS-involved photo-Fenton-like process is the best substitute for the photo-Fenton one over pH range of 5-8. In addition, humic acid (HA, one of the important components of natural organic matter) incorporated iron oxide-mediated photo-Fenton-like processes for bacteria inactivation was also studied, and facilitating effect was found in UVA/hematite/PMS and UVA/magnetite/PDS systems. Reactive oxygen species (ROS) exploration experiments revealed that ·OH was the predominant radical in H2O2- and PDS-containing systems, whereas 1O2 was one of the principal reactive species in the PMS systems. In addition to the semiconductor photocatalysis of iron oxides and UVA-activated oxidants, iron-complexes (iron-oxidant complexes and iron-bacteria complexes) mediated ligand-to-metal charge transfer (LMCT) processes also made contribution to bacterial inactivation. Overall, this study demonstrates that it is feasible to replace H2O2 with PMS in a photo-Fenton-like process for water disinfection using a low dose of reagents, mediated by cheap catalysts, such as hematite and magnetite, it is also hoped to provide some insights to practical water treatment.


Asunto(s)
Desinfectantes , Compuestos Férricos , Rayos Ultravioleta , Compuestos Férricos/química , Desinfectantes/farmacología , Peróxido de Hidrógeno/química , Oxidantes/química , Escherichia coli/efectos de los fármacos , Desinfección/métodos , Especies Reactivas de Oxígeno/metabolismo , Purificación del Agua/métodos , Peróxidos/química
3.
Heliyon ; 10(5): e27036, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38495153

RESUMEN

The exacerbated global water scarcity and stricter water directives are leading to an increment in the recycled water use, requiring the development of new cost-effective advanced water treatments to provide safe water to the population. In this sense, peracetic acid (PAA, CH3C(O)OOH) is an environmentally friendly disinfectant with the potential to challenge the dominance of chlorine in large wastewater treatment plants in the near future. PAA can be used as an alternative oxidant to H2O2 to carry out the Fenton reaction, and it has recently been proven as more effective than H2O2 towards emerging pollutants degradation at circumneutral pH values and in the presence of anions. PAA activation by homogeneous and heterogeneous iron-based materials generates - besides HO• and FeO2+ - more selective CH3C(O)O• and CH3C(O)OO• radicals, slightly scavenged by typical HO• quenchers (e.g., bicarbonates), which extends PAA use to complex water matrices. This is reflected in an exponential progress of iron-PAA publications during the last few years. Although some reviews of PAA general properties and uses in water treatment were recently published, there is no account on the research and environmental applications of PAA activation by Fe-based materials, in spite of its gratifying progress. In view of these statements, here we provide a holistic review of the types of iron-based PAA activation systems and analyse the diverse iron compounds employed to date (e.g., ferrous and ferric salts, ferrate(VI), spinel ferrites), the use of external ferric reducing/chelating agents (e.g., picolinic acid, l-cysteine, boron) and of UV-visible irradiation systems, analysing the mechanisms involved in each case. Comparison of PAA activation by iron vs. other transition metals (particularly cobalt) is also discussed. This work aims at providing a thorough understanding of the Fe/PAA-based processes, facilitating useful insights into its advantages and limitations, overlooked issues, and prospects, leading to its popularisation and know-how increment.

4.
Sci Total Environ ; 919: 170500, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38336070

RESUMEN

Limited information exists on the potential of aged microplastics to induce photodegradation of organic pollutants under sunlight irradiation. In this work, nicotine (NIC), a widespread emerging contaminant, was used as a model organic substrate to investigate this innovative degradation process. Polystyrene (PS) pellets were artificially aged and became rich in oxygenated moieties with their carbonyl index reaching 0.43 ± 0.04 after 4 d of aging. The degradation of NIC photosensitized by aged PS at different pH values was monitored for 6 h under simulated sunlight irradiation (650 W/m2). The maximum degradation rate was observed at pH = 11 (75 % NIC removal from a 10 mg L-1 solution containing 50 g L-1 aged PS pellets), suggesting that the unprotonated NIC is the most photoreactive form. Increasing the PS load from 50 to 200 g L-1 accelerated NIC degradation. The addition of 2.5 mg L-1 humic acids had a slight enhancement role (82 % NIC degradation), which confirms their effectiveness as photosensitizers. NIC photosensitization by aged PS was also studied in the presence of t-butanol (55 % NIC removal in solutions containing 100 mg L-1 t-butanol) and in anoxic conditions (NIC solution purged with N2; 95 % NIC removal), to gain insight into the respective roles of the potentially formed •OH and 1O2. The main photo-produced reactive species involved in NIC degradation likely were the triplet states of the PS beads (3PS*). Differently from most advanced oxidation processes, NIC's photodegradation by aged PS was not affected by increasing amount of chloride and we observed negligible differences between NIC degradation in ultra-pure water and seawater. The effectiveness of irradiated PS towards NIC photodegradation was also investigated in tap water and secondary wastewater. Overall, the possibility to decontaminate polluted water with waste-derived materials is interesting in the framework of circular economy.

5.
Environ Sci Technol ; 57(23): 8785-8795, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37269319

RESUMEN

The photodegradation of vanillin, as a proxy of methoxyphenols emitted by biomass burning, was investigated in artificial snow at 243 K and in liquid water at room temperature. Nitrite (NO2-) was used as a photosensitizer of reactive oxygen and nitrogen species under UVA light, because of its key photochemical role in snowpacks and atmospheric ice/waters. In snow and in the absence of NO2-, slow direct photolysis of vanillin was observed due to back-reactions taking place in the quasi-liquid layer at the ice-grain surface. The addition of NO2- made the photodegradation of vanillin faster, because of the important contribution of photoproduced reactive nitrogen species in vanillin phototransformation. These species triggered both nitration and oligomerization of vanillin in irradiated snow, as the identified vanillin by-products showed. Conversely, in liquid water, direct photolysis was the main photodegradation pathway of vanillin, even in the presence of NO2-, which had negligible effects on vanillin photodegradation. The results outline the different role of iced and liquid water in the photochemical fate of vanillin in different environmental compartments.


Asunto(s)
Nitritos , Contaminantes Químicos del Agua , Fotólisis , Hielo , Nieve , Dióxido de Nitrógeno , Agua , Contaminantes Químicos del Agua/análisis
6.
J Chromatogr A ; 1693: 463896, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36868084

RESUMEN

Water pollution from pharmaceutical drugs is becoming an environmental issue of increasing concern, making water quality monitoring a crucial priority to safeguard public health. In particular, the presence of antidepressants, benzodiazepines, antiepileptics, and antipsychotics require specific attention as they are known to be harmful to aquatic biota. In this study, a multi-class comprehensive method for the detection of 105 pharmaceutical residues in small (30 mL) water samples was developed according to fit-for-purpose criteria and then applied to provide wide screening of samples obtained from four Wastewater Treatment Plants (WWTPs) in northern Italy. The filtered samples (0.22 µm filters) were extracted by SPE, and then eluted. 5 µL of the concentrated samples were analyzed by a UHPLC-QTOF-HRMS method validated for screening purposes. Adequate sensitivity was recorded for all target analytes, with limits of detection below 5 ng/L for 76 out of 105 analytes. A total of 23 out of the 105 targeted pharmaceutical drugs was detected in all samples. Several further compounds were detected over wide concentration intervals, ranging from ng/L to µg/L. In addition, the retrospective analysis of full-scan QTOF-HRMS data was exploited to carry out an untargeted screening of some drugs' metabolites. As a proof of concept, it was investigated the presence of the carbamazepine metabolites, which is among the most frequently detected contaminants of emerging concern in wastewater. Thanks to this approach, 10,11-dihydro-10-hydroxycarbamazepine, 10,11-dihydro-10,11-dihydroxycarbamazepine and carbamazepine-10,11-epoxide were identified, the latter requiring particular attention, since it exhibits antiepileptic properties similar to carbamazepine and potential neurotoxic effects in living organism.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Cromatografía Líquida de Alta Presión/métodos , Monitoreo Epidemiológico Basado en Aguas Residuales , Estudios Retrospectivos , Espectrometría de Masas/métodos , Carbamazepina/análisis , Preparaciones Farmacéuticas , Contaminantes Químicos del Agua/análisis
7.
Photochem Photobiol Sci ; 22(3): 603-613, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36374373

RESUMEN

Photo-Fenton processes activated by biodegradable Fe(III)-EDDS complexes have attracted huge attention from the scientific community, but the operative mechanism of the photo-activation of H2O2 in the presence of Fe(III)-EDDS has not been fully clarified yet. The application of the Fe(III)-EDDS complex in Fenton and photo-Fenton (mainly under UV-B light) processes, using 4-chlorophenol (4-CP) as a model pollutant was explored to give insights into the operative mechanism. Furthermore, the potential synergistic contribution of soybean peroxidase (SBP) was investigated, since it has been reported that upon irradiation of Fe(III)-EDDS the production of H2O2 can occur. SBP did not boost the 4-CP degradation, suggesting that the possibly produced H2O2 reacts immediately with the Fe(II) ion with a quick kinetics that does not allow the diffusion of H2O2 into the bulk of the solution (i.e., outside the solvent cage of the complex). So, a concerted mechanism in which the photochemically produced H2O2 and Fe(II) react inside the hydration sphere of the Fe(III)-EDDS complex is proposed.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Compuestos Ferrosos , Peróxido de Hidrógeno/química , Hierro/química , Oxidación-Reducción , Peroxidasa , Peroxidasas , Glycine max
8.
Environ Sci Technol ; 56(22): 15650-15660, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36240489

RESUMEN

Partitioning between surface waters and the atmosphere is an important process, influencing the fate and transport of semi-volatile contaminants. In this work, a simple methodology that combines experimental data and modeling was used to investigate the degradation of a semi-volatile pollutant in a two-phase system (surface water + atmosphere). 4-Isobutylacetophenone (IBAP) was chosen as a model contaminant; IBAP is a toxic transformation product of the non-steroidal, anti-inflammatory drug ibuprofen. Here, we show that the atmospheric behavior of IBAP would mainly be characterized by reaction with •OH radicals, while degradation initiated by •NO3 or direct photolysis would be negligible. The present study underlines that the gas-phase reactivity of IBAP with •OH is faster, compared to the likely kinetics of volatilization from aqueous systems. Therefore, it might prove very difficult to detect gas-phase IBAP. Nevertheless, up to 60% of IBAP occurring in a deep and dissolved organic carbon-rich water body might be eliminated via volatilization and subsequent reaction with gas-phase •OH. The present study suggests that the gas-phase chemistry of semi-volatile organic compounds which, like IBAP, initially occur in natural water bodies in contact with the atmosphere is potentially very important in some environmental conditions.


Asunto(s)
Atmósfera , Ibuprofeno , Atmósfera/química , Fotólisis , Volatilización , Antiinflamatorios no Esteroideos , Agua/química
9.
Chemosphere ; 306: 135502, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35803378

RESUMEN

The formation quantum yields of photochemically produced reactive intermediates (PPRIs) by irradiated CDOM (in this study, Suwannee River Natural Organic Matter and Upper Mississippi River Natural Organic Matter) decrease with increasing irradiation wavelength. In particular, the formation quantum yields of the excited triplet states of CDOM (3CDOM*) and of singlet oxygen (1O2) have an exponentially decreasing trend with wavelength. The •OH wavelength trend is different, because more effective •OH production occurs under UVB irradiation than foreseen by a purely exponential function. We show that the parameter-adjustable Weibull function (which adapts to both exponential and some non-exponential trends) is suitable to fit the mentioned quantum yield data, and it is very useful when CDOM irradiation is carried out under polychromatic lamps as done here. Model calculations suggest that, thanks to the ability of CDOM to also absorb visible radiation, and despite its decreasing quantum yield of •OH generation with increasing wavelength, CDOM would be able to trigger •OH photogeneration in deep waters, to a higher extent than UVB-absorbing nitrate or UVB + UVA-absorbing nitrite.


Asunto(s)
Materia Orgánica Disuelta , Ríos , Compuestos Orgánicos , Oxígeno Singlete , Rayos Ultravioleta
10.
Chemosphere ; 303(Pt 2): 134895, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35568219

RESUMEN

The fungicide tebuconazole (TBCZ) is expected to undergo negligible direct photolysis in surface freshwaters, but it can be degraded by indirect photochemistry. TBCZ mainly reacts with hydroxyl radicals and, to a lesser extent, with the triplet states of chromophoric dissolved organic matter (3CDOM*). Indirect photochemistry is strongly affected by environmental conditions, and TBCZ lifetimes of about one week are expected in sunlit surface waters under favourable circumstances (shallow waters with low concentrations of dissolved organic carbon, DOC, during summer). In these cases, the time trend would follow pseudo-first order kinetics (mono-exponential decay). Under less favourable conditions, photoinduced degradation would span over a few or several months, and TBCZ phototransformation would depart from an exponential trend because of seasonally changing sunlight irradiance. The TBCZ phototransformation products should be less toxic than their parent compound,thus photodegradation has potential to decrease the environmental impact of TBCZ. Hydroxylation is a major TBCZ transformation route, due to either OH attack, or one-electron oxidation sensitised by 3CDOM*, followed by reaction of the oxidised transient with oxygen and water.


Asunto(s)
Fungicidas Industriales , Contaminantes Químicos del Agua , Agua Dulce/química , Cinética , Procesos Fotoquímicos , Fotólisis , Luz Solar , Triazoles , Contaminantes Químicos del Agua/análisis
11.
Environ Sci Technol ; 56(8): 5123-5131, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35357818

RESUMEN

Peracetic acid has quickly gained ground in water treatment over the last decade. Specifically, its disinfection efficacy toward a wide spectrum of microorganisms in wastewater is accompanied by the simplicity of its handling and use. Moreover, peracetic acid represents a promising option to achieve disinfection while reducing the concentration of typical chlorination byproducts in the final effluent. However, its chemical behavior is still amply debated. In this study, the reactivity of peracetic acid in the presence of halides, namely, chloride and bromide, was investigated in both synthetic waters and in a real contaminated water. While previous studies focused on the ability of this disinfectant to form halogenated byproducts in the presence of dissolved organic matter and halides, this work indicates that peracetic acid also contributes itself as a primary source in the formation of these potentially carcinogenic compounds. Specifically, this study suggests that 1.5 mM peracetic acid may form around 1-10 µg/L of bromoform when bromide is present. Bromoform formation reaches a maximum at near neutral pH, which is highly relevant for wastewater management.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Bromuros/química , Desinfectantes/química , Desinfección , Ácido Peracético/química , Aguas Residuales , Contaminantes Químicos del Agua/química
12.
Water Res ; 209: 117867, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34864345

RESUMEN

The carbonate radical CO3•- and the excited triplet states of chromophoric dissolved organic matter play an important role in the photodegradation of some easily oxidized pollutants in surface waters, such as the aromatic amines. Anilines and sulfadiazine are known to undergo back-reduction processes when their degradation is mediated by the excited triplet states of photosensitizers (triplet sensitization). Back-reduction, which inhibits photodegradation, means that phenols or the antioxidant (mostly phenolic) moieties occurring in the natural dissolved organic matter of surface waters reduce, back to the parent compounds, the radical species derived from the mono-electronic oxidation of anilines and sulfadiazine. Here we show that a similar process takes place as well in the case of substrate oxidation by CO3•-. The carbonate radical was here produced upon oxidation of HCO3-/CO32- by either HO•, generated by nitrate photolysis, or SO4•-, obtained by photolysis of persulfate. Back-reduction was observed in both cases in the presence of phenols, but at different extents as far as the details of reaction kinetics are concerned, and the occurrence of additional reductants might affect the efficacy by which phenols carry out the reduction process. In particular, when the carbonate radicals were produced by NO3- photolysis in the presence of HCO3-/CO32-, the numerical values of [PhOH]1/2 (the phenol concentration that halves the photodegradation rate of the substrate) were 2.19 ± 0.23 µM for aniline, 1.15 ± 0.25 µM for 3-chloroaniline, 1.18 ± 0.26 µM for 4-chloroaniline, and 1.18 ± 0.22 µM for 3,4-dichloroaniline. In contrast, when CO3•- was produced by photolysis of persulfate in the presence of HCO3-/CO32-, the corresponding values were 0.28 ± 0.02 µM for aniline and 0.79 ± 0.10 µM for sulfadiazine. Back-reduction has the potential to significantly inhibit photodegradation by CO3•- and excited triplet states in natural waters, and to comparatively increase the importance of HO•-mediated degradation that is not affected by the same phenomenon.

13.
Chemosphere ; 283: 131170, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34467949

RESUMEN

The Fenton process activated by Zero Valent Iron (ZVI-Fenton) is shown here to effectively remove antibiotics reserved for hospital settings (specifically used to treat antibiotic-resistant infections) from wastewater, thereby helping in the fight against bacterial resistance. Effective degradation of cefazolin, imipenem and vancomycin in real urban wastewater was achieved at pH 5, which is quite near neutrality when compared with classic Fenton that works effectively at pH 3-4. The possibility to operate successfully at pH 5 has several advantages compared to operation at lower pH values: (i) lower reagent costs for pH adjustment; (ii) insignificant impact on wastewater conductivity, because lesser acid is required to acidify and lesser or no base for neutralization; (iii) undetectable release of dissolved Fe, which could otherwise be an issue for wastewater quality. The cost of reagents for the treatment ranges between 0.04 and 0.07 $ m-3, which looks very suitable for practical applications. The structures of the degradation intermediates of the studied antibiotics and their likely abundance suggest that, once the primary compound is eliminated, most of the potential to trigger antibiotic action has been removed. Application of the ZVI-Fenton technique to wastewater treatment could considerably lower the possibility for antibiotics to trigger the development of resistance in bacteria.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Antibacterianos , Hospitales , Peróxido de Hidrógeno , Hierro , Oxidación-Reducción , Contaminantes Químicos del Agua/análisis
14.
Sci Total Environ ; 796: 148953, 2021 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-34328879

RESUMEN

Membrane distillation is a promising technology to desalinate hypersaline produced waters. However, the organic content can foul and wet the membrane, while some fractions may pass into the distillate and impair its quality. In this study, the applicability of the traditional Fenton process was investigated and preliminarily optimized as a pre-treatment of a synthetic hypersaline produced water for the following step of membrane distillation. The Fenton process was also compared to a modified Fenton system, whereby safe iron ligands, i.e., ethylenediamine-N,N'-disuccinate and citrate, were used to overcome practical limitations of the traditional reaction. The oxidation pre-treatments achieved up to 55% removal of the dissolved organic carbon and almost complete degradation of the low molecular weight toxic organic contaminants. The pre-treatment steps did not improve the productivity of the membrane distillation process, but they allowed for obtaining a final effluent with significantly higher quality in terms of organic content and reduced Vibrio fischeri inhibition, with half maximal effective concentration (EC50) values up to 25 times those measured for the raw produced water. The addition of iron ligands during the oxidation step simplified the process, but resulted in an effluent of slightly lower quality in terms of toxicity compared to the use of traditional Fenton.


Asunto(s)
Destilación , Contaminantes Químicos del Agua , Peróxido de Hidrógeno , Oxidación-Reducción , Aguas Residuales , Agua , Contaminantes Químicos del Agua/toxicidad
15.
Chemosphere ; 280: 130668, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33962299

RESUMEN

This work reports for the first time the UVC photodegradation of cilastatin, a renal dehydropeptidase inhibitor co-adminstered with the imipenem antibiotic. Initially, solutions of cilastatin at varying concentrations were prepared in ultra-pure water and the direct photolysis of cilastatin was monitored under 254-nm irradiation. Degradation was slower at higher initial cilastatin concentrations, due to absorption saturation. Of the different eluting photoproducts, only one was tentatively identified as oxidized cilastatin bearing a sulfoxide group. UV-254 photolysis occurred faster at lower pH values, because the protonated forms of the molecule (H3A+, H2A) have both higher absorption coefficients and higher photolysis quantum yields than the non-protonated ones (HA-, A2-). The direct photolysis of cilastatin does not involve •OH, as excluded by experiments in which t-butanol was added as •OH scavenger, whereas the presence of humic acids inhibited photolysis due to competition for radiation absorption. The same explanation partially accounts for the observation that the photolysis kinetics of cilastatin was slower in tap water, river water and treated wastewater samples compared to ultra-pure water. Moreover, the direct photolysis quantum yield was also lower in water matrices compared to ultra-pure water. Similar findings reported for triclosan and the herbicide 2-methyl-4-chlorophenoxyacetic acid in previous studies might suggest that the water matrix components could carry out either physical quenching of cilastatin's excited states or back-reduction to cilastatin of the partially oxidized degradation intermediates. Overall, the present results demonstrate that UVC irradiation is a fast and efficient process for the degradation of cilastatin in natural water and treated wastewater.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Cilastatina , Cinética , Fotólisis , Rayos Ultravioleta , Agua , Contaminantes Químicos del Agua/análisis
16.
Molecules ; 26(4)2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33572434

RESUMEN

Perfluoroalkyl substances (PFAS) represent one of the most recalcitrant class of compounds of emerging concern and their removal from water is a challenging goal. In this study, we investigated the removal efficiency of three selected PFAS from water, namely, perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA) and pefluorooctanesulfonic acid (PFOS) using a custom-built non-thermal plasma generator. A modified full factorial design (with 2 levels, 3 variables and the central point in which both quadratic terms and interactions between couple of variables were considered) was used to investigate the effect of plasma discharge frequency, distance between the electrodes and water conductivity on treatment efficiency. Then, the plasma treatment running on optimized conditions was used to degrade PFAS at ppb level both individually and in mixture, in ultrapure and groundwater matrices. PFOS 1 ppb exhibited the best degradation reaching complete removal after 30 min of treatment in both water matrices (first order rate constant 0.107 min-1 in ultrapure water and 0.0633 min-1 in groundwater), while the degradation rate of PFOA and PFHxA was slower of around 65% and 83%, respectively. During plasma treatment, the production of reactive species in the liquid phase (hydroxyl radical, hydrogen peroxide) and in the gas phase (ozone, NOx) was investigated. Particular attention was dedicated to the nitrogen balance in solution where, following to NOx hydrolysis, total nitrogen (TN) was accumulated at the rate of up to 40 mgN L-1 h-1.


Asunto(s)
Ácidos Alcanesulfónicos/metabolismo , Caproatos/metabolismo , Caprilatos/metabolismo , Fluorocarburos/metabolismo , Agua Subterránea/química , Gases em Plasma/química , Contaminantes Químicos del Agua/metabolismo , Purificación del Agua/métodos , Ácidos Alcanesulfónicos/análisis , Ácidos Alcanesulfónicos/aislamiento & purificación , Caproatos/análisis , Caproatos/aislamiento & purificación , Caprilatos/análisis , Caprilatos/aislamiento & purificación , Fluorocarburos/análisis , Fluorocarburos/aislamiento & purificación , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/aislamiento & purificación
17.
Chemosphere ; 272: 129636, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33485036

RESUMEN

The performance of a photocatalytic device for VOC abatement was studied at typical environmental concentrations (C0 at ppb and sub-ppb levels) using urban air in a Continuous-flow Stirred-Tank Reactor (CSTR). The photocatalytic performance was evaluated for 42 VOCs at ppb and sub-ppb concentrations and the photocatalytic kinetic constant for abatement k was measured for each specific compound. An overall value of k was also obtained for the sum of all quantified VOCs. The kinetic constant k allows to predict the time needed to abate the substrate down to the desired residual concentration and to define the correct sanitization protocol. The kinetic constant k depends on the effective concentration in accordance with the basic kinetic model already reported for the photocatalytic process. This model foresees the transformation rate of a substrate as a function of a bundle of microscopic kinetic constants, the concentration of the substrate at the surface and the adsorbed photon flux. From this model it was possible i) to correlate the k value with microscopic catalytic parameters and the VOC concentration; ii) to obtain useful suggestions for the standardization of test methods on gaseous pollutants. Clear indications were also obtained on the actual ability of photocatalytic devices to abate urban VOCs. Since many of them are quickly degradable and some fully halogenated hydrocarbons found in urban air are not, this research can also help to decide which organic compounds are suitable for standardization testing or to use a mixture of a majority of them.


Asunto(s)
Contaminantes Atmosféricos , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos/análisis , Catálisis , Gases , Cinética , Compuestos Orgánicos Volátiles/análisis
18.
Nanomaterials (Basel) ; 10(9)2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32937945

RESUMEN

Benzotriazoles are a new class of organic emerging pollutants ubiquitously found in the environment. The increase of their concentration to detectable values is the consequence of the inability of the Conventional Waste Water Plants (CWWPs) to abate these products. We subjected 1H-benzotriazole (BTz), tolyltriazole (TTz), and Tinuvin P (TP, a common UV plastic stabilizer) to photocatalytic degradation under UV-irradiated TiO2 in different conditions. The principal photoformed intermediates, the relationship between the degradation rate and the pH, the degree of mineralization, and the fate of the organic nitrogen were investigated. Under the adopted experimental conditions, all the studied substrates were rapidly photocatalytically transformed (the maximum degradation rates for BTz and TTz were (3.88 ± 0.05) × 10-2 and (2.11 ± 0.09) × 10-2 mM min-1, respectively) and mineralized (the mineralization rate for BTz and TTz was 4.0 × 10-3 mM C min-1 for both substrates). Different from the 1,2,4-triazole rings that are not completely mineralized under photocatalytic conditions, 1H-benzotriazole and tolyltriazole were completely mineralized with a mechanism that involved a partial conversion of organic nitrogen to N2. The photocatalytic process activated by UV-irradiated TiO2 is an efficient tool to abate 1H-benzotriazole and its derivatives, avoiding their release in the environment.

19.
J Hazard Mater ; 393: 122413, 2020 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-32126419

RESUMEN

The Fenton reaction is an effective advanced oxidation process occurring in nature and applied in engineering processes toward the degradation of harmful substances, including contaminants of emerging concern. The traditional Fenton application can be remarkably improved by using iron complexes with organic ligands, which allow for the degradation of contaminants at near-neutral pH and for the reduction of sludge production. This work discusses the mechanisms involved both in the classic Fenton process and in the presence of ligands that coordinate iron. Cyclohexane was selected as mechanistic probe, by following the formation of the relevant products, namely, cyclohexanol (A) and cyclohexanone (K). As expected, the classic Fenton process was associated with an A/K ratio of approximately 1, evidence of a dominant free radical behavior. Significantly, the presence of widely common natural and synthetic carboxyl ligands selectively produced mostly the alcoholic species in the first oxidation step. A ferryl-based mechanism was thus preferred when iron complexes were formed. Common iron ligands are here proven to direct the reaction pathway towards a selective metal-based catalysis. Such a system may be more easily engineered than a free radical-based one to safely remove hazardous contaminants from water and minimize the production of harmful intermediates.

20.
Chemosphere ; 246: 125705, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-31891848

RESUMEN

The photochemical fate of the herbicide bentazone was assessed by lab experiments and modeling tools. Experimental and modeling results showed that bentazone is mainly photodegraded by direct photolysis in natural water samples, even in the presence of dissolved organic matter (DOM) that can act as light-screening agent, photosensitizer and scavenger of reactive species. Even when it was dissolved in natural water samples containing different DOM amounts, the phototransformation kinetics of bentazone was unchanged compared to irradiation runs in ultrapure water. This finding suggests that the DOM and the other components of our samples did not affect the direct photolysis of bentazone by light-absorption competition, at least at the experimental optical path lengths, and did not induce significant indirect photodegradation by producing reactive transient species. Photochemical modeling in a lake-water photoreactivity scenario corroborated the observed experimental results, showing the predominant role of direct photolysis in the overall (direct + indirect) photodegradation of bentazone at different water depths and DOM contents. However, the model predicted a minor but non-negligible contribution of indirect photochemistry (i.e., reactions triggered by HO•, CO3•- and 3CDOM*) to the herbicide degradation. This contribution (especially by 3CDOM*) could become crucial in deep and DOM-rich water bodies. Finally, several photoproducts formed by direct photolysis and HO•-induced photodegradation were identified, which should not be particularly toxic for aquatic organisms and Vibrio fischeri bacteria.


Asunto(s)
Benzotiadiazinas/química , Procesos Fotoquímicos , Contaminantes Químicos del Agua/química , Agua Dulce/química , Herbicidas , Cinética , Fotoquímica , Fotólisis , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...