Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Surg Obes Relat Dis ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38383247

RESUMEN

BACKGROUND: Protein glycosylation is an enzymatic process known to reflect an individual's physiologic state and changes thereof. The impact of metabolic interventions on plasma protein N-glycosylation has only been sparsely investigated. OBJECTIVE: To examine alterations in plasma protein N-glycosylation following changes in caloric intake and bariatric surgery. SETTING: University of Texas Southwestern Medical Center, US and Oxford University Hospitals, UK. METHODS: This study included 2 independent patient cohorts that recruited 10 and 37 individuals with obesity undergoing a period of caloric restriction followed by bariatric surgery. In both cohorts, clinical data were collated, and the composition of plasma protein N-glycome was analyzed chromatographically. Linear mixed models adjusting for age, sex, and multiple testing (false discovery rate <.05) were used to investigate longitudinal changes in glycosylation features and metabolic clinical markers. RESULTS: A low-calorie diet resulted in a decrease in high-branched trigalactosylated and trisialylated plasma N-glycans and a concomitant increase in low-branched N-glycans in both cohorts. Participants from one cohort additionally underwent a washout period during which caloric intake and body weight increased, resulting in reversal of the initial low-calorie diet-related changes in the plasma N-glycome. Immediate postoperative follow-up revealed the same pattern of N-glycosylation changes in both cohorts-an increase in complex, high-branched, antennary fucosylated, extensively galactosylated and sialylated N-glycans and a substantial decline in simpler, low-branched, core fucosylated, bisected, agalactosylated, and asialylated glycans. A 12-month postoperative monitoring in one cohort showed that N-glycan complexity declines while low branching increases. CONCLUSIONS: Plasma protein N-glycosylation undergoes extensive alterations following caloric restriction and bariatric surgery. These comprehensive changes may reflect the varying inflammatory status of the individual following dietary and surgical interventions and subsequent weight loss.

3.
J Infect Dis ; 229(4): 1166-1177, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-37633660

RESUMEN

Glucocorticoid (GC) therapy had been strongly recommended for pediatric sepsis (grade 1A). However, the recommendation was changed to grade 2C in 2020 due to weak evidence. About 32.8% of patients with pediatric septic develop relative adrenal insufficiency (RAI). But whether GC therapy should be determined by RAI status is controversial. This study utilized 21-day-old SF1CreSRBIfl/fl mice as the first pediatric RAI mouse model to assess the pathogenesis of RAI and evaluate GC therapy. RAI mice exhibited a substantially higher mortality rate in cecal ligation and puncture and cecal slurry-induced sepsis. These mice featured persistent inflammatory responses and were effectively rescued by GC therapy. RNA sequencing analysis revealed persistent inflammatory responses in RAI mice, caused by transcriptional dysregulation of AP-1 and NF-κB, and cytokine-induced secondary inflammatory response. Our findings support a precision medicine approach to guide GC therapy for pediatric patients based on the status of RAI.


Asunto(s)
Insuficiencia Suprarrenal , Sepsis , Humanos , Niño , Ratones , Animales , Insuficiencia Suprarrenal/etiología , Citocinas , FN-kappa B , Ciego , Ligadura/efectos adversos , Factores de Riesgo
4.
Mol Metab ; 78: 101812, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37777009

RESUMEN

OBJECTIVE: Sialic acid is a terminal monosaccharide of glycans in glycoproteins and glycolipids, and its derivation from glucose is regulated by the rate-limiting enzyme UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE). Although the glycans on key endogenous hepatic proteins governing glucose metabolism are sialylated, how sialic acid synthesis and sialylation in the liver influence glucose homeostasis is unknown. Studies were designed to fill this knowledge gap. METHODS: To decrease the production of sialic acid and sialylation in hepatocytes, a hepatocyte-specific GNE knockdown mouse model was generated, and systemic glucose metabolism, hepatic insulin signaling and glucagon signaling were evaluated in vivo or in primary hepatocytes. Peripheral insulin sensitivity was also assessed. Furthermore, the mechanisms by which sialylation in the liver influences hepatic insulin signaling and glucagon signaling and peripheral insulin sensitivity were identified. RESULTS: Liver GNE deletion in mice caused an impairment of insulin suppression of hepatic glucose production. This was due to a decrease in the sialylation of hepatic insulin receptors (IR) and a decline in IR abundance due to exaggerated degradation through the Eph receptor B4. Hepatic GNE deficiency also caused a blunting of hepatic glucagon receptor (GCGR) function which was related to a decline in its sialylation and affinity for glucagon. An accompanying upregulation of hepatic FGF21 production caused an enhancement of skeletal muscle glucose disposal that led to an overall increase in glucose tolerance and insulin sensitivity. CONCLUSION: These collective observations reveal that hepatic sialic acid synthesis and sialylation modulate glucose homeostasis in both the liver and skeletal muscle. By interrogating how hepatic sialic acid synthesis influences glucose control mechanisms in the liver, a new metabolic cycle has been identified in which a key constituent of glycans generated from glucose modulates the systemic control of its precursor.


Asunto(s)
Resistencia a la Insulina , Ácido N-Acetilneuramínico , Ratones , Animales , Ácido N-Acetilneuramínico/metabolismo , Glucagón , Músculo Esquelético/metabolismo , Hígado/metabolismo , Glucosa , Insulina , Homeostasis , Polisacáridos
5.
Nat Commun ; 14(1): 4989, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37591837

RESUMEN

The estrogen receptor (ER) designated ERα has actions in many cell and tissue types that impact glucose homeostasis. It is unknown if these include mechanisms in endothelial cells, which have the potential to influence relative obesity, and processes in adipose tissue and skeletal muscle that impact glucose control. Here we show that independent of impact on events in adipose tissue, endothelial ERα promotes glucose tolerance by enhancing endothelial insulin transport to skeletal muscle. Endothelial ERα-deficient male mice are glucose intolerant and insulin resistant, and in females the antidiabetogenic actions of estradiol (E2) are absent. The glucose dysregulation is due to impaired skeletal muscle glucose disposal that results from attenuated muscle insulin delivery. Endothelial ERα activation stimulates insulin transcytosis by skeletal muscle microvascular endothelial cells. Mechanistically this involves nuclear ERα-dependent upregulation of vesicular trafficking regulator sorting nexin 5 (SNX5) expression, and PI3 kinase activation that drives plasma membrane recruitment of SNX5. Thus, coupled nuclear and non-nuclear actions of ERα promote endothelial insulin transport to skeletal muscle to foster normal glucose homeostasis.


Asunto(s)
Receptor alfa de Estrógeno , Insulina , Animales , Femenino , Masculino , Ratones , Células Endoteliales , Glucosa , Músculo Esquelético , Receptores de Estrógenos
7.
Clin Immunol ; 255: 109745, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37625670

RESUMEN

The antiphospholipid syndrome (APS) is an autoimmune disease characterized by the persistent presence of antibodies directed against phospholipids and phospholipid-binding proteins that are associated with thrombosis and pregnancy-related morbidity. The latter includes fetal deaths, premature birth and maternal complications. In the early 1990s, a distinct set of autoantibodies, termed collectively antiphospholipid antibodies (aPL), were identified as the causative agents of this disorder. Subsequently histological analyses of the placenta from APS pregnancies revealed various abnormalities, including inflammation at maternal-fetal interface and poor placentation manifested by reduced trophoblast invasion and limited uterine spiral artery remodeling. Further preclinical investigations identified the molecular targets of aPL and the downstream intracellular pathways of key placental cell types. While these discoveries suggest potential therapeutics for this disorder, definitive clinical trials have not been completed. This concise review focuses on the recent developments in the field of basic and translational research pursuing novel mechanisms underlying obstetric APS.

8.
Nat Commun ; 14(1): 4101, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37491347

RESUMEN

Hypercholesterolemia and vascular inflammation are key interconnected contributors to the pathogenesis of atherosclerosis. How hypercholesterolemia initiates vascular inflammation is poorly understood. Here we show in male mice that hypercholesterolemia-driven endothelial activation, monocyte recruitment and atherosclerotic lesion formation are promoted by a crosstalk between macrophages and endothelial cells mediated by the cholesterol metabolite 27-hydroxycholesterol (27HC). The pro-atherogenic actions of macrophage-derived 27HC require endothelial estrogen receptor alpha (ERα) and disassociation of the cytoplasmic scaffolding protein septin 11 from ERα, leading to extranuclear ERα- and septin 11-dependent activation of NF-κB. Furthermore, pharmacologic inhibition of cyp27a1, which generates 27HC, affords atheroprotection by reducing endothelial activation and monocyte recruitment. These findings demonstrate cell-to-cell communication by 27HC, and identify a major causal linkage between the hypercholesterolemia and vascular inflammation that partner to promote atherosclerosis. Interventions interrupting this linkage may provide the means to blunt vascular inflammation without impairing host defense to combat the risk of atherosclerotic cardiovascular disease that remains despite lipid-lowering therapies.


Asunto(s)
Aterosclerosis , Hipercolesterolemia , Masculino , Ratones , Animales , Receptor alfa de Estrógeno/metabolismo , Hipercolesterolemia/complicaciones , Hipercolesterolemia/metabolismo , Células Endoteliales/metabolismo , Septinas/metabolismo , Colesterol/metabolismo , Aterosclerosis/metabolismo , Macrófagos/metabolismo , Transducción de Señal , Inflamación/patología
9.
Nat Commun ; 14(1): 2656, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37160898

RESUMEN

Two common features of dietary polyphenols have hampered our mechanistic understanding of their beneficial effects for decades: targeting multiple organs and extremely low bioavailability. We show here that resveratrol intervention (REV-I) in high-fat diet (HFD)-challenged male mice inhibits chylomicron secretion, associated with reduced expression of jejunal but not hepatic scavenger receptor class B type 1 (SR-B1). Intestinal mucosa-specific SR-B1-/- mice on HFD-challenge exhibit improved lipid homeostasis but show virtually no further response to REV-I. SR-B1 expression in Caco-2 cells cannot be repressed by pure resveratrol compound while fecal-microbiota transplantation from mice on REV-I suppresses jejunal SR-B1 in recipient mice. REV-I reduces fecal levels of bile acids and activity of fecal bile-salt hydrolase. In Caco-2 cells, chenodeoxycholic acid treatment stimulates both FXR and SR-B1. We conclude that gut microbiome is the primary target of REV-I, and REV-I improves lipid homeostasis at least partially via attenuating FXR-stimulated gut SR-B1 elevation.


Asunto(s)
Quilomicrones , Polifenoles , Masculino , Animales , Ratones , Humanos , Resveratrol/farmacología , Células CACO-2 , Receptores Depuradores
10.
Sci Signal ; 16(777): eadd4900, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36943922

RESUMEN

Cytokine release syndrome (CRS) is a systemic inflammatory syndrome associated with infection- or drug-induced T cell activation and can cause multiple organ failure and even death. Because current treatments are ineffective in some patients with severe CRS, we set out to identify risk factors and mechanisms behind severe CRS that might lead to preventive therapies and better clinical outcomes in patients. In mice, we found that deficiency in the adrenal stress response-with similarities to such in patients called relative adrenal insufficiency (RAI)-conferred a high risk for lethal CRS. Mice treated with CD3 antibodies were protected against lethal CRS by the production of glucocorticoids (GC) induced by the adrenal stress response in a manner dependent on the scavenger receptor B1 (SR-BI), a receptor for high-density lipoprotein (HDL). Mice with whole-body or adrenal gland-specific SR-BI deficiency exhibited impaired GC production, more severe CRS, and increased mortality in response to CD3 antibodies. Pretreatment with a low dose of GC effectively suppressed the development of CRS and rescued survival in SR-BI-deficient mice without compromising T cell function through apoptosis. Our findings suggest that RAI may be a risk factor for therapy-induced CRS and that pretreating RAI patients with GC may prevent lethal CRS.


Asunto(s)
Glándulas Suprarrenales , Glucocorticoides , Ratones , Animales , Receptores Depuradores de Clase B , Ratones Noqueados , Glucocorticoides/farmacología , Lipoproteínas HDL
12.
Front Endocrinol (Lausanne) ; 13: 953165, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36157440

RESUMEN

Sialylation is a dynamically regulated modification, which commonly occurs at the terminal of glycan chains in glycoproteins and glycolipids in eukaryotic cells. Sialylation plays a key role in a wide array of biological processes through the regulation of protein-protein interactions, intracellular localization, vesicular trafficking, and signal transduction. A majority of the proteins involved in lipoprotein metabolism and atherogenesis, such as apolipoproteins and lipoprotein receptors, are sialylated in their glycan structures. Earlier studies in humans and in preclinical models found a positive correlation between low sialylation of lipoproteins and atherosclerosis. More recent works using loss- and gain-of-function approaches in mice have revealed molecular and cellular mechanisms by which protein sialylation modulates causally the process of atherosclerosis. The purpose of this concise review is to summarize these findings in mouse models and to provide mechanistic insights into lipoprotein sialylation and atherosclerosis.


Asunto(s)
Aterosclerosis , Receptores de Lipoproteína , Animales , Apolipoproteínas , Aterosclerosis/metabolismo , Glucolípidos/metabolismo , Glicoproteínas/metabolismo , Humanos , Lipoproteínas , Ratones , Polisacáridos , Sialiltransferasas/química , Sialiltransferasas/metabolismo
13.
Cancers (Basel) ; 14(6)2022 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-35326671

RESUMEN

Cholesterol affects the proliferation of breast cancer (BC) and in particular of estrogen receptor-negative (ER-) BC. Cholesterol is converted to 27-hydroxycholesterol (27HC), which promotes the growth of ER+ BC. Potentially, 27HC can be involved in cholesterol-dependent ER- BC proliferation. Stable MDA-MB-231 silenced clones for CYP7B1 (27HC metabolizing enzyme) show an increased basal proliferation rate, which is not observed in the presence of lipoprotein-deprived serum. Furthermore, the treatment of SKBR3, MDA-MB-231 and MDA-MB-468 with 27HC increased cell proliferation that was prevented by G15, a selective G Protein-Coupled Estrogen Receptor (GPER) inhibitor, suggested this receptor to be a potential 27HC target. Binding experiments demonstrate that 27HC is a new ligand for GPER. We show that ERK1/2 and NFκB are part of the 27HC/GPER pathway. The stable silencing of GPER prevents NFκB activation and reduces basal and 27HC-dependent tumor growth. Additionally, conditioned medium from ER- BC cells treated with 27HC promotes tube formation, which does not occur with CM from GPER silenced cells. Collectively, these data demonstrate that cholesterol conversion into 27HC promotes ER- BC growth and progression, and the expression of GPER is required for its effects.

14.
Front Immunol ; 13: 1110516, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36713379

RESUMEN

Introduction: 25-60% of septic patients experience relative adrenal insufficiency (RAI) and glucocorticoid (GC) is frequently used in septic patients. However, the efficacy of GC therapy and whether GC therapy should be based on the status of RAI are highly controversial. Our poor understanding about the pathogenesis of RAI and a lack of RAI animal model present significant barriers to address these critical issues. Methods: Scavenger receptor BI (SR-BI) regulates stress-induced GC (iGC) production in response to stress. We generated SF1CreSR-BIfl/fl mice and utilized the mice as a RAI model to elucidate the pathogenesis of RAI and GC therapy in sepsis. SF1CreSR-BIfl/fl mice did not express SR-BI in adrenal gland and lacked iGC production upon ACTH stimulation, thus, they are RAI. Results and Discussion: RAI mice were susceptible to cecal ligation and puncture (CLP)-induced sepsis (6.7% survival in SF1CreSR-BIfl/fl mice versus 86.4% in SR-BIfl/fl mice; p = 0.0001). Compared to a well-controlled systemic inflammatory response in SR-BIfl/fl mice, SF1CreSR-BIfl/fl mice featured a persistent hyperinflammatory response. Supplementation of a low stress dose of GC to SF1CreSR-BIfl/fl mice kept the inflammatory response under control and rescued the mice. However, SR-BIfl/fl mice receiving GC treatment exhibited significantly less survival compared to SR-BIfl/fl mice without GC treatment. In conclusions, we demonstrated that RAI is a risk factor for death in this mouse model of sepsis. We further demonstrated that RAI is an endotype of sepsis, which features persistent hyperinflammatory response. We found that GC treatment benefits mice with RAI but harms mice without RAI. Our study provides a proof of concept to support a precision medicine approach for sepsis therapy - selectively applying GC therapy for a subgroup of patients with RAI.


Asunto(s)
Insuficiencia Suprarrenal , Sepsis , Animales , Ratones , Insuficiencia Suprarrenal/tratamiento farmacológico , Insuficiencia Suprarrenal/etiología , Glucocorticoides/farmacología , Glucocorticoides/uso terapéutico , Medicina de Precisión , Factores de Riesgo , Sepsis/patología
15.
Sci Immunol ; 6(62)2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34452924

RESUMEN

Under normal conditions, the blood-brain barrier effectively regulates the passage of immune cells into the central nervous system (CNS). However, under pathological conditions such as multiple sclerosis (MS), leukocytes, especially monocytes, infiltrate the CNS where they promote inflammatory demyelination, resulting in paralysis. Therapies targeting the immune cells directly and preventing leukocyte infiltration exist for MS but may compromise the immune system. Here, we explore how apolipoprotein E receptor 2 (ApoER2) regulates vascular adhesion and infiltration of monocytes during inflammation. We induced experimental autoimmune encephalitis in ApoER2 knockout mice and in mice carrying a loss-of-function mutation in the ApoER2 cytoplasmic domain. In both models, paralysis and neuroinflammation were largely abolished as a result of greatly diminished monocyte adherence due to reduced expression of adhesion molecules on the endothelial surface. Our findings expand our mechanistic understanding of the vascular barrier, the regulation of inflammation and vascular permeability, and the therapeutic potential of ApoER2-targeted therapies.


Asunto(s)
Encefalomielitis Autoinmune Experimental/inmunología , Endotelio Vascular/inmunología , Proteínas Relacionadas con Receptor de LDL/inmunología , Monocitos/inmunología , Animales , Adhesión Celular/inmunología , Proteínas Relacionadas con Receptor de LDL/deficiencia , Masculino , Ratones , Ratones Noqueados
17.
Arterioscler Thromb Vasc Biol ; 41(4): 1309-1318, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33626909

RESUMEN

[Figure: see text].


Asunto(s)
Anticuerpos Neutralizantes/farmacología , Aterosclerosis/prevención & control , Moléculas de Adhesión Celular Neuronal/antagonistas & inhibidores , Adhesión Celular/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Proteínas de la Matriz Extracelular/antagonistas & inhibidores , Rodamiento de Leucocito/efectos de los fármacos , Leucocitos/efectos de los fármacos , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Oligonucleótidos Antisentido/farmacología , Animales , Aterosclerosis/genética , Aterosclerosis/inmunología , Aterosclerosis/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Moléculas de Adhesión Celular Neuronal/deficiencia , Moléculas de Adhesión Celular Neuronal/genética , Técnicas de Cocultivo , Modelos Animales de Enfermedad , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Proteínas de la Matriz Extracelular/deficiencia , Proteínas de la Matriz Extracelular/genética , Femenino , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas Relacionadas con Receptor de LDL/metabolismo , Leucocitos/inmunología , Leucocitos/metabolismo , Masculino , Ratones Transgénicos , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Placa Aterosclerótica , Receptores de LDL/deficiencia , Receptores de LDL/genética , Proteína Reelina , Serina Endopeptidasas/deficiencia , Serina Endopeptidasas/genética , Transducción de Señal , Células U937
18.
Curr Atheroscler Rep ; 23(2): 6, 2021 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-33420646

RESUMEN

PURPOSE OF REVIEW: Scavenger receptor class B type I (SR-BI) serves a key role in the reverse cholesterol transport in the liver as the high-affinity receptor for HDL. SR-BI is abundantly expressed in endothelium, and earlier works indicate that the receptor mediates anti-atherogenic actions of HDL. However, more recent studies uncovered novel functions of endothelial SR-BI as a lipoprotein transporter, which regulates transcellular transport process of both LDL and HDL. This brief review focuses on the unique functions of endothelial SR-BI and how they influence atherogenesis. RECENT FINDINGS: Earlier studies indicate that SR-BI facilitates anti-atherogenic actions of HDL through modulation of intracellular signaling to stimulate endothelial nitric oxide synthase. In vivo studies in global SR-BI knockout mice also showed a strong atheroprotective role of the receptor; however, a contribution of endothelial SR-BI to atherosclerosis process in vivo has not been fully appreciated. Recent studies using cultured endothelial cells and in mice with endothelial-specific deletion of the receptor revealed previously unappreciated pro-atherogenic actions of SR-BI, which relates to its ability to deliver LDL into arteries. On the other hand, SR-BI has also been implicated in transport of HDL to the sub-intimal space as a part of reverse cholesterol transport. SR-BI mediates internalization and transcellular transport of both HDL and LDL, and the cellular and molecular mechanism of the process has just begun to emerge. Harnessing these dual transport functions of the endothelial SR-BI may provide a novel, effective intervention to atherosclerosis.


Asunto(s)
Aterosclerosis , Células Endoteliales , Animales , Aterosclerosis/genética , Endotelio , Humanos , Ratones , Receptores Depuradores de Clase B/genética , Transducción de Señal
19.
Sci Transl Med ; 12(556)2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32801146

RESUMEN

Neuroinflammation as a result of immune cell recruitment into the central nervous system (CNS) is a key pathogenic mechanism of multiple sclerosis (MS). However, current anti-inflammatory interventions depleting immune cells or directly targeting their trafficking into the CNS can have serious side effects, highlighting a need for better immunomodulatory strategies. We detected increased Reelin concentrations in the serum of patients with MS, resulting in increased endothelial permeability to leukocytes through increased nuclear factor κB-mediated expression of vascular adhesion molecules. We thus investigated the prophylactic and therapeutic potential of Reelin immunodepletion in experimental autoimmune encephalomyelitis (EAE) and further validated the results in Reelin knockout mice. Removal of plasma Reelin by either approach protected against neuroinflammation and largely abolished the neurological consequences by reducing endothelial permeability and immune cell accumulation in the CNS. Our findings suggest Reelin depletion as a therapeutic approach with an inherent good safety margin for the treatment of MS and other diseases where leukocyte extravasation is a major driver of pathogenicity.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Encefalomielitis , Esclerosis Múltiple , Animales , Sistema Nervioso Central , Humanos , Leucocitos , Ratones , Ratones Endogámicos C57BL , Proteína Reelina
20.
J Med Imaging (Bellingham) ; 7(3): 034001, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32509915

RESUMEN

Purpose: Impaired insulin-induced microvascular recruitment in skeletal muscle contributes to insulin resistance in type 2 diabetic disease. Previously, quantification of microvascular recruitment at the capillary level has been performed with either the full image or manually selected region-of-interests. These subjective approaches are imprecise, time-consuming, and unsuitable for automated processes. Here, an automated multiscale image processing approach was performed by defining a vessel diameter threshold for an objective and reproducible analysis at the microvascular level. Approach: A population of C57BL/6J male mice fed standard chow and studied at age 13 to 16 weeks comprised the lean group and 24- to 31-week-old mice who received a high-fat diet were designated the obese group. A clinical ultrasound scanner (Acuson Sequoia 512) equipped with an 15L8-S linear array transducer was used in a nonlinear imaging mode for sensitive detection of an intravascular microbubble contrast agent. Results: By eliminating large vessels from the dynamic contrast-enhanced ultrasound (DCE-US) images (above 300 µ m in diameter), obesity-related changes in perfusion and morphology parameters were readily detected in the smaller vessels, which are known to have a greater impact on skeletal muscle glucose disposal. The results from the DCE-US images including all of the vessels were compared for three different-sized vessel groups, namely, vessels smaller than 300, 200, and 150 µ m in diameter. Conclusions: Our automated image processing provides objective and reproducible results by focusing on a particular size of vessel, thereby allowing for a selective evaluation of longitudinal changes in microvascular recruitment for a specific-sized vessel group between diseased and healthy microvascular networks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...