Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JCO Clin Cancer Inform ; 7: e2200062, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37428988

RESUMEN

PURPOSE: Stratifying patients with cancer according to risk of relapse can personalize their care. In this work, we provide an answer to the following research question: How to use machine learning to estimate probability of relapse in patients with early-stage non-small-cell lung cancer (NSCLC)? MATERIALS AND METHODS: For predicting relapse in 1,387 patients with early-stage (I-II) NSCLC from the Spanish Lung Cancer Group data (average age 65.7 years, female 24.8%, male 75.2%), we train tabular and graph machine learning models. We generate automatic explanations for the predictions of such models. For models trained on tabular data, we adopt SHapley Additive exPlanations local explanations to gauge how each patient feature contributes to the predicted outcome. We explain graph machine learning predictions with an example-based method that highlights influential past patients. RESULTS: Machine learning models trained on tabular data exhibit a 76% accuracy for the random forest model at predicting relapse evaluated with a 10-fold cross-validation (the model was trained 10 times with different independent sets of patients in test, train, and validation sets, and the reported metrics are averaged over these 10 test sets). Graph machine learning reaches 68% accuracy over a held-out test set of 200 patients, calibrated on a held-out set of 100 patients. CONCLUSION: Our results show that machine learning models trained on tabular and graph data can enable objective, personalized, and reproducible prediction of relapse and, therefore, disease outcome in patients with early-stage NSCLC. With further prospective and multisite validation, and additional radiological and molecular data, this prognostic model could potentially serve as a predictive decision support tool for deciding the use of adjuvant treatments in early-stage lung cancer.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Masculino , Femenino , Anciano , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/terapia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/terapia , Recurrencia Local de Neoplasia/diagnóstico , Aprendizaje Automático , Pronóstico
2.
J Biomed Inform ; 144: 104424, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37352900

RESUMEN

OBJECTIVE: Lung cancer exhibits unpredictable recurrence in low-stage tumors and variable responses to different therapeutic interventions. Predicting relapse in early-stage lung cancer can facilitate precision medicine and improve patient survivability. While existing machine learning models rely on clinical data, incorporating genomic information could enhance their efficiency. This study aims to impute and integrate specific types of genomic data with clinical data to improve the accuracy of machine learning models for predicting relapse in early-stage, non-small cell lung cancer patients. METHODS: The study utilized a publicly available TCGA lung cancer cohort and imputed genetic pathway scores into the Spanish Lung Cancer Group (SLCG) data, specifically in 1348 early-stage patients. Initially, tumor recurrence was predicted without imputed pathway scores. Subsequently, the SLCG data were augmented with pathway scores imputed from TCGA. The integrative approach aimed to enhance relapse risk prediction performance. RESULTS: The integrative approach achieved improved relapse risk prediction with the following evaluation metrics: an area under the precision-recall curve (PR-AUC) score of 0.75, an area under the ROC (ROC-AUC) score of 0.80, an F1 score of 0.61, and a Precision of 0.80. The prediction explanation model SHAP (SHapley Additive exPlanations) was employed to explain the machine learning model's predictions. CONCLUSION: We conclude that our explainable predictive model is a promising tool for oncologists that addresses an unmet clinical need of post-treatment patient stratification based on the relapse risk while also improving the predictive power by incorporating proxy genomic data not available for specific patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células Pequeñas , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Recurrencia Local de Neoplasia/genética , Pulmón
3.
AMIA Annu Symp Proc ; 2022: 1062-1071, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37128408

RESUMEN

Early-stage lung cancer is crucial clinically due to its insidious nature and rapid progression. Most of the prediction models designed to predict tumour recurrence in the early stage of lung cancer rely on the clinical or medical history of the patient. However, their performance could likely be improved if the input patient data contained genomic information. Unfortunately, such data is not always collected. This is the main motivation of our work, in which we have imputed and integrated specific type of genomic data with clinical data to increase the accuracy of machine learning models for prediction of relapse in early-stage, non-small cell lung cancer patients. Using a publicly available TCGA lung adenocarcinoma cohort of 501 patients, their aneuploidy scores were imputed into similar records in the Spanish Lung Cancer Group (SLCG) data, more specifically a cohort of 1348 early-stage patients. First, the tumor recurrence in those patients was predicted without the imputed aneuploidy scores. Then, the SLCG data were enriched with the aneuploidy scores imputed from TCGA. This integrative approach improved the prediction of the relapse risk, achieving area under the precision-recall curve (PR-AUC) score of 0.74, and area under the ROC (ROC-AUC) score of 0.79. Using the prediction explanation model SHAP (SHapley Additive exPlanations), we further explained the predictions performed by the machine learning model. We conclude that our explainable predictive model is a promising tool for oncologists that addresses an unmet clinical need of post-treatment patient stratification based on the relapse risk, while also improving the predictive power by incorporating proxy genomic data not available for the actual specific patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/genética , Recurrencia Local de Neoplasia , Genómica
4.
AMIA Annu Symp Proc ; 2021: 853-862, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35308971

RESUMEN

Early detection and mitigation of disease recurrence in non-small cell lung cancer (NSCLC) patients is a nontrivial problem that is typically addressed either by rather generic follow-up screening guidelines, self-reporting, simple nomograms, or by models that predict relapse risk in individual patients using statistical analysis of retrospective data. We posit that machine learning models trained on patient data can provide an alternative approach that allows for more efficient development of many complementary models at once, superior accuracy, less dependency on the data collection protocols and increased support for explainability of the predictions. In this preliminary study, we describe an experimental suite of various machine learning models applied on a patient cohort of 2442 early stage NSCLC patients. We discuss the promising results achieved, as well as the lessons we learned while developing this baseline for further, more advanced studies in this area.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Neoplasias Pulmonares/diagnóstico , Estadificación de Neoplasias , Nomogramas , Pronóstico , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...