Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.299
Filtrar
1.
Am J Cancer Res ; 14(4): 1935-1946, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38726279

RESUMEN

Endometrial cancer (EC) is a malignancy that poses a threat to woman's health worldwide. Building upon prior work, we explored the inhibitory effect of verteporfin on EC. We showed that verteporfin can damage the mitochondria of EC cells, leading to a decrease of mitochondrial membrane potential and an increase in ROS (reactive oxygen species). In addition, verteporfin treatment was shown to inhibit the proliferation and migration of EC cells, promote apoptosis, and reduce the expression of mitophagy-related proteins PINK1/parkin and TOM20. The ROS inhibitor N-Acetyl Cysteine was able to rescue the expression of PINK1/parkin proteins. This suggests that verteporfin may inhibit mitophagy by elevating ROS levels, thereby inhibiting EC cell viability. The effect of verteporfin on mitophagy supports further investigation as a potential therapeutic option for EC.

2.
J Exerc Sci Fit ; 22(4): 288-296, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38706950

RESUMEN

Background: The lack of Physical Activity (PA) and prolonged Recreational Screen Time (RST) among children and adolescents has been exacerbated during the COVID-19 pandemic, causing this issue to escalate into a crucial public health concern. This study aims to investigate the trends in PA and RST among Chinese children and adolescents from 2019 to 2022, thereby analyzing the short-term and long-term effects of the pandemic on PA and RST among Chinese children and adolescents. Methods: A nationally representative sample of Chinese primary, middle, and high school students was surveyed annually between September and December from 2019 to 2022 using a consistent set of questionnaires. Trends in PA and RST across different school levels, genders, areas (urban/rural), and regions (north/south) were analyzed using Segmented Linear Regression. Results: From 2019 to 2022, the PA and RST of children and adolescents displayed an inverted U-shaped trend, initially increasing and subsequently declining. Specifically, from 2019 to 2021, the PA of children and adolescents significantly increased but dramatically declined from 2021 to 2022. This trend in PA is more pronounced among primary, male, urban, and northern children and adolescent. The RST of children and adolescents increased from 2019 to 2020 but significantly decreased from 2020 to 2022. This trend in RST is more pronounced among primary, urban, and southern children and adolescent. Conclusions: This research unveils the effects of the pandemic on PA and RST in children and adolescents, suggesting short-term beneficial and long-term adverse effects on PA and short-term adverse and long-term beneficial effects on RST. These findings provide a foundation for formulating policies related to children and adolescents' PA and RST during the pandemic.

3.
BMC Public Health ; 24(1): 1305, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741155

RESUMEN

BACKGROUND: The prevalence of physical inactivity and sedentary behavior among children and adolescents is a growing public health concern. This study aims to examine the trends in Physical Activity (PA) and Recreational Screen Time (RST) amongst children and adolescents in China, considering variations in genders, school levels, areas (urban versus rural), and regions (north versus south). The findings provide a foundation to guide policy and strategy making for future health promotion and development. METHODS: An annual national cross-sectional survey was conducted in China from 2017 to 2019 cumulatively involving 52,503 (48% female) children and adolescents from grades 4 to 12 (aged 12.72 ± 2.12). Data on PA and RST were collected through self-administered questionnaires. Weighted least squares regression was used to analyze the trends and differences in PA and RST among the participants' profiles. RESULTS: There was an annual decreased in PA compliance rate of approximately 3.43% (95% CI: 0.79-6.08%) for primary school students, primarily among males residing in rural areas, and in northern regions. Middle school students experienced a yearly decrease of about 5.23% (95% CI: 2.55-7.92%) in PA compliance across all genders, regions, and urban areas. Similarly, the RST compliance rates for primary school students declined by approximately 3.18% (95% CI: 1.57-4.78%) annually for all genders and areas, but only in the northern regions. CONCLUSIONS: This research highlights a downward trend in PA and RST compliance amongst Chinese children and adolescents, with variations based on school level, gender, area, and region. Urgent policies and interventions are imperative to promote PA while mitigating excessive RST within these populations.


Asunto(s)
Ejercicio Físico , Tiempo de Pantalla , Humanos , Masculino , Femenino , China , Adolescente , Niño , Estudios Transversales , Conducta Sedentaria , Población Rural/estadística & datos numéricos , Población Rural/tendencias , Encuestas y Cuestionarios , Recreación , Población Urbana/estadística & datos numéricos , Pueblos del Este de Asia
4.
Mol Cancer Res ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38718076

RESUMEN

Lung adenocarcinoma (LUAD) is the most prevalent histological type of lung cancer. Previous studies have reported that specific long non-coding RNAs (lncRNAs) are involved in cancer development and progression. The phenotype and mechanism of ENST00000440028, named MSL3P1, a lncRNA which we referring to a cancer-testis gene with potential roles in tumorigenesis and progression, have not been reported. We found that MSL3P1 is overexpressed in LUAD tumor tissues, which is significantly associated with clinical characteristics, metastasis, and poor clinical prognosis. MSL3P1 promotes the metastasis of LUAD in vitro and in vivo. The enhancer reprogramming in LUAD tumor tissue is the major driver of the aberrantly expression of MSL3P1. Mechanistically, due to the competitive binding to CUL3 mRNA with ZFC3H1 protein (a protein involved in targeting polyadenylated RNA to exosomes and promoting the degradation of target mRNA), MSL3P1 can prevent the ZFC3H1-mediated RNA degradation of CUL3 mRNA and transport it to the cytoplasm. This activates the downstream epithelial-to-mesenchymal transition signaling pathway, and promote tumor invasion and metastasis. Implications: This study indicates that lncRNA MSL3P1 regulates CUL3 mRNA stability and promotes the metastasis and holds potential as a prognostic biomarker and therapeutic target in LUAD.

5.
Acta Pharmacol Sin ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719954

RESUMEN

Hypertensive cerebrovascular remodeling involves the enlargement of vascular smooth muscle cells (VSMCs), which activates volume-regulated Cl- channels (VRCCs). The leucine-rich repeat-containing family 8 A (LRRC8A) has been shown to be the molecular identity of VRCCs. However, its role in vascular remodeling during hypertension is unclear. In this study, we used vascular smooth muscle-specific LRRC8A knockout (CKO) mice and an angiotensin II (Ang II)-induced hypertension model. The results showed that cerebrovascular remodeling during hypertension was ameliorated in CKO mice, and extracellular matrix (ECM) deposition was reduced. Based on the RNA-sequencing analysis of aortic tissues, the level of matrix metalloproteinases (MMPs), such as MMP-9 and MMP-14, were reduced in CKO mice with hypertension, which was further verified in vivo by qPCR and immunofluorescence analysis. Knockdown of LRRC8A in VSMCs inhibited the Ang II-induced upregulation of collagen I, fibronectin, and matrix metalloproteinases (MMPs), and overexpression of LRRC8A had the opposite effect. Further experiments revealed an interaction between with-no-lysine (K)-1 (WNK1), which is a "Cl--sensitive kinase", and Forkhead transcription factor O3a (FOXO3a), which is a transcription factor that regulates MMP expression. Ang II induced the phosphorylation of WNK1 and downstream FOXO3a, which then increased the expression of MMP-2 and MMP-9. This process was inhibited or potentiated when LRRC8A was knocked down or overexpressed, respectively. Overall, these results demonstrate that LRRC8A knockout in vascular smooth muscle protects against cerebrovascular remodeling during hypertension by reducing ECM deposition and inhibiting the WNK1/FOXO3a/MMP signaling pathway, demonstrating that LRRC8A is a potential therapeutic target for vascular remodeling-associated diseases such as stroke.

6.
Gerodontology ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38712514

RESUMEN

OBJECTIVES: To assess ARC residents' and staff perceptions of the benefits of, and comfort with, teledentistry use in ARC facilities in the Otago region of NZ, and identify end-user-level factors associated with its use. BACKGROUND: Difficulty in accessing oral healthcare services is a key barrier to aged residential care (ARC) residents' oral health and well-being. Teledentistry offers a possible solution, yet studies on its acceptability in ARCs are sparse, especially in New Zealand (NZ). This study assessed ARC residents' and staff perceptions of the benefits of, and comfort with, teledentistry use in ARC facilities in the Otago region of NZ and identified end-user-level factors associated with its use. MATERIALS AND METHODS: Rest home-level residents and care staff in ARC facilities in the Otago region of NZ were surveyed to assess their awareness of teledentistry, perceptions of benefit and comfort using teledentistry, and end-user-level factors associated with the feasibility of using it in ARCs. RESULTS: One hundred residents and 77 care staff from 14 facilities participated. Three-quarters of resident participants thought that teledentistry was beneficial. Three in five resident participants were comfortable receiving remote dental consultations and care advice through teledentistry. Acceptability, as measured by perceived benefits and comfort, was lower among older participants. Staff participants were receptive to teledentistry use for residents and were comfortable facilitating remote dental consultations and care through teledentistry. No staff participants disagreed with the potential benefits of teledentistry for ARC residents. CONCLUSION: Teledentistry would likely be acceptable to residents and staff in ARC facilities in NZ, contributing to residents' improved access to oral health care and improved oral health and well-being.

7.
Nanotechnology ; 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38701764

RESUMEN

Herein, corundum-structured Ga2O3(α-Ga2O3) nanorod array/fluorine-doped SnO2(FTO) structures have been fabricated by hydrothermal and thermal annealing processes with different precursor concentrations from 0.01 M to 0.06 M. The diameter and length of the nanorod arrays are much larger with increasing precursor concentrations due to more nucleation sites and precursor ions participating in the reaction procedures. The optical bandgap decreases from 4.75 eV to 4.47 eV because of the tensile stress relieving with increasing the precursor concentrations. Based on self-powered photoelectrochemical (PEC) photodetectors, the peak responsivity is improved from ~0.33 mA/W for 0.06 M to ~1.51 mA/W for 0.02 M. Schottky junctions can be formed in PEC cells. More photogenerated carriers can be produced in wider depletion region. From Mott-Schottky plots, the depletion regions become much wider with decreasing the precursor concentrations. Therefore, the enhance responsivity is owing to the wider depletion regions. Due to the reduced possibility of photogenerated holes captured by traps ascribed from fewer green and yellow luminescence defects, smaller charge transfer resistance, and shorter transportation route, the decay time becomes much faster through decreasing the precursor concentrations. Compared with the other self-powered α-Ga2O3-nanorod-array-based PEC photodetectors, it shows the fastest response time (decay time of 0.005 s/0.026 s) simply modulated by precursor concentrations for the first time without employing complex precursors, seed layers or special device designs. Compared with other high-responsivity monoclinic Ga2O3(α-Ga2O3) self-powered photodetectors, our devices also show comparable response speed with simple control and design. This work provides the realization of fast-speed self-powered Ga2O3based solar-blind ultraviolet photodetectors by simple modulation processes and design, which is a significant guidance for their applications in warnings, imaging, computing, communication and logic circuit, in the future.

8.
Updates Surg ; 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38691331

RESUMEN

Differentiated thyroid cancer (DTC) is the most common endocrine malignancy, with a rising incidence worldwide. Accurate prognostic models are essential for effective patient management. This study evaluates the prognostic value of various lymph node staging systems in DTC using a competing risks model. We used SEER database records (1998-2016) of 16,527 DTC patients, analyzing N stage, positive lymph node numbers (PLNNs), metastatic lymph node ratio (MLNR), log odds of positive lymph nodes (LODDS), and log odds of the negative lymph node (NLN)/T stage ratio (LONT). Univariate and multivariate analyses in a competing risks model were performed, along with subgroup analyses based on demographic and clinical characteristics. In this study of 16,527 patients with DTC, different lymph node staging systems showed different prognostic correlations in univariate and multivariate analyses. In particular, PLNNs showed significant prognostic correlations in several subgroups. Additionally, PLNNs were more suitable as a lymph node staging system for DTC than LODDS and MLNR in N1 stage subgroups, with an optimal cut-off of 13. Receiver operating characteristic curves, calibration curves and nomograms improved the clinical utility of the prognostic model based on PLNNs. Using competing risks model and subgroup analyses, we found that PLNNs had the best prognostic discriminatory efficacy for patients with DTC, especially those with N1 stage disease, and had an optimal cut-off value of 13.

9.
J Dent ; : 105071, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38740248

RESUMEN

OBJECTIVES: The aim of this study was to observe the radiographic healing of periapical lesions after root canal treatment via volumetric measurements based on cone-beam computed tomography (CBCT) over 4 years. METHODS: In total, 162 single-root teeth from patients with chronic periapical periodontitis who underwent primary root canal treatment were included in this retrospective study. Follow-up visits were scheduled at 1, 2, and 4 years after treatment. The volume of radiolucency at pretreatment and follow-up were measured, and the radiographic outcomes were classified into 4 categories: absence, reduction, uncertain or enlargement. Reduction or enlargement was considered when the volumetric change in radiolucency was 20% or more. RESULTS: During the 4-year follow-up period, 128 teeth were reviewed at least once, including 3 extracted teeth. Of the remaining 125 teeth, the volume of radiolucency was reduced in 116 teeth (90.6%), uncertain in 5, and enlarged in 4 teeth during 1 to 4 years after treatment. Among the 43 teeth with reduced radiolucency at 1 year after treatment, 42 (97.7%) had continuing reduced lesions at 4 years. In the 2 teeth with enlarged radiolucency at 1 year, the volume of radiolucency doubled at 4 years. Cox regression analysis revealed that the preoperative radiolucency size was a risk factor for persistent periapical radiolucency. CONCLUSIONS: The efficacy of root canal treatment for apical periodontitis was predictable. When the radiolucency changed by 20% or more in volume on CBCT scans at 1 year after treatment, reversal of the radiographic healing tendency was rare. CLINICAL SIGNIFICANCE: The volumetric changes in radiolucency on CBCT could reflect trends in the healing process and may foster early clinical decision-making.

10.
Eur J Med Chem ; 271: 116417, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38688063

RESUMEN

Since synovial hypoxic microenvironment significantly promotes the pathological progress of rheumatoid arthritis (RA), hypoxia-inducible factor 1 (HIF-1) has been emerged as a promising target for the development of novel therapeutic agents for RA treatment. In this study, we designed and synthesized a series of diaryl substituted isoquinolin-1(2H)-one derivatives as HIF-1 signaling inhibitors using scaffold-hopping strategy. By modifying the substituents on N-atom and 6-position of isoquinolin-1-one, we discovered compound 17q with the most potent activities against HIF-1 (IC50 = 0.55 µM) in a hypoxia-reactive element (HRE) luciferase reporter assay. Further pharmacological studies revealed that 17q concentration-dependently blocked hypoxia-induced HIF-1α protein accumulation, reduced inflammation response, inhibited cellular invasiveness and promoted VHL-dependent HIF-1α degradation in human RA synovial cell line. Moreover, 17q improved the pathological injury of ankle joints, decreased angiogenesis and attenuated inflammation response in the adjuvant-induced arthritis (AIA) rat model, indicating the promising therapeutic potential of compound 17q as an effective HIF-1 inhibitor for RA therapy.


Asunto(s)
Artritis Reumatoide , Isoquinolinas , Transducción de Señal , Animales , Humanos , Masculino , Ratas , Antirreumáticos/farmacología , Antirreumáticos/química , Antirreumáticos/síntesis química , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/patología , Artritis Experimental/metabolismo , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Artritis Reumatoide/patología , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas , Subunidad alfa del Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Isoquinolinas/química , Isoquinolinas/farmacología , Isoquinolinas/síntesis química , Estructura Molecular , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad , Quinolonas/síntesis química , Quinolonas/química , Quinolonas/farmacología
11.
Eur J Med Chem ; 271: 116410, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38615409

RESUMEN

With the increasing reports of antibiotic resistance in this species, Pseudomonas aeruginosa is a common human pathogen with important implications for public health. Bacterial quorum sensing (QS) systems are potentially broad and versatile targets for developing new antimicrobial compounds. While previous reports have demonstrated that certain amide compounds can inhibit bacterial growth, there are few reports on the specific inhibitory effects of these compounds on bacterial quorum sensing systems. In this study, thirty-one amide derivatives were synthesized. The results of the biological activity assessment indicated that A9 and B6 could significantly inhibit the expression of lasB, rhlA, and pqsA, effectively reducing several virulence factors regulated by the QS systems of PAO1. Additionally, compound A9 attenuated the pathogenicity of PAO1 to Galleria mellonella larvae. Meanwhile, RT-qPCR, SPR, and molecular docking studies were conducted to explore the mechanism of these compounds, which suggests that compound A9 inhibited the QS systems by binding with LasR and PqsR, especially PqsR. In conclusion, amide derivatives A9 and B6 exhibit promising potential for further development as novel QS inhibitors in P. aeruginosa.


Asunto(s)
Amidas , Antibacterianos , Descubrimiento de Drogas , Simulación del Acoplamiento Molecular , Pseudomonas aeruginosa , Percepción de Quorum , Pseudomonas aeruginosa/efectos de los fármacos , Percepción de Quorum/efectos de los fármacos , Amidas/farmacología , Amidas/química , Amidas/síntesis química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/síntesis química , Relación Estructura-Actividad , Estructura Molecular , Pruebas de Sensibilidad Microbiana , Relación Dosis-Respuesta a Droga , Animales
12.
J Pharm Anal ; 14(3): 401-415, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38618249

RESUMEN

Activation of nuclear factor erythroid 2-related factor 2 (Nrf2) by Kelch-like ECH-associated protein 1 (Keap1) alkylation plays a central role in anti-inflammatory therapy. However, activators of Nrf2 through alkylation of Keap1-Kelch domain have not been identified. Deoxynyboquinone (DNQ) is a natural small molecule discovered from marine actinomycetes. The current study was designed to investigate the anti-inflammatory effects and molecular mechanisms of DNQ via alkylation of Keap1. DNQ exhibited significant anti-inflammatory properties both in vitro and in vivo. The pharmacophore responsible for the anti-inflammatory properties of DNQ was determined to be the α, ß-unsaturated amides moieties by a chemical reaction between DNQ and N-acetylcysteine. DNQ exerted anti-inflammatory effects through activation of Nrf2/ARE pathway. Keap1 was demonstrated to be the direct target of DNQ and bound with DNQ through conjugate addition reaction involving alkylation. The specific alkylation site of DNQ on Keap1 for Nrf2 activation was elucidated with a synthesized probe in conjunction with liquid chromatography-tandem mass spectrometry. DNQ triggered the ubiquitination and subsequent degradation of Keap1 by alkylation of the cysteine residue 489 (Cys489) on Keap1-Kelch domain, ultimately enabling the activation of Nrf2. Our findings revealed that DNQ exhibited potent anti-inflammatory capacity through α, ß-unsaturated amides moieties active group which specifically activated Nrf2 signal pathway via alkylation/ubiquitination of Keap1-Kelch domain, suggesting the potential values of targeting Cys489 on Keap1-Kelch domain by DNQ-like small molecules in inflammatory therapies.

13.
J Spinal Cord Med ; : 1-14, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647358

RESUMEN

BACKGROUND: Oxidative stress is a crucial factor contributing to the occurrence and development of secondary damage in spinal cord injuries (SCI), ultimately impacting the recovery process. α-lipoic acid (ALA) exhibits potent antioxidant properties, effectively reducing secondary damage and providing neuroprotective benefits. However, the precise mechanism by which ALA plays its antioxidant role remains unknown. METHODS: We established a model of moderate spinal cord contusion in rats. Experimental rats were randomly divided into 3 distinct groups: the sham group, the model control group (SCI_Veh), and the ALA treatment group (SCI_ALA). The sham group rats were exposed only to the SC without contusion injury. Rats belonging to SCI_Veh group were not administered any treatment after SCI. Rats of SCI_ALA group were intraperitoneally injected with the corresponding volume of ALA according to body weight for three consecutive days after the surgery. Subsequently, three days after SCI, spinal cord samples were obtained from three groups of rats: the sham group, model control group, and administration group. Thereafter, total RNA was extracted from the samples and the expression of three sets of differential genes was analyzed by transcriptome sequencing technology. Real-time PCR was used to verify the sequencing results. The impact of ALA on oxidative stress in rats following SCI was assessed by measuring their total antioxidant capacity and hydrogen peroxide (H2O2) content. The effects of ALA on rat recovery following SCI was investigated through Beattie and Bresnahan (BBB) score and footprint analysis. RESULTS: The findings from the transcriptome sequencing analysis revealed that the model control group had 2975 genes with altered expression levels when compared to the ALA treatment group. Among these genes, 1583 were found to be upregulated while 1392 were down-regulated. Gene ontology (GO) displayed significant enrichment in terms of functionality, specifically in oxidative phosphorylation, oxidoreductase activity, and signaling receptor activity. The Kyoto encyclopedia of genes and genomes (KEGG) pathway was enriched in oxidative phosphorylation, glutathione metabolism and cell cycle. ALA was found to have multiple benefits for rats after SCI, including increasing their antioxidant capacity and reducing H2O2 levels. Additionally, it was effective in improving motor function (such as 7 days after SCI, the BBB score for SCI_ALA was 8.400 ± 0.937 compared to 7.050 ± 1.141 for SCI_Veh) and promoting histological recovery after SCI (The results of HE demonstrated that the percentage of damage area in was 44.002 ± 6.680 in the SCI_ALA and 57.215 ± 3.964 in the SCI_Veh at the center of injury.). The sequence data from this study has been deposited into Sequence Read Archive (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE242507). CONCLUSION: Overall, the findings of this study confirmed the beneficial effects of ALA on recovery in SCI rats through transcriptome sequencing, behavioral, as well histology analyses.

14.
J Agric Food Chem ; 72(15): 8784-8797, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38566473

RESUMEN

Food protein carriers from different sources might have distinct stabilizing and enhancing effects on the same small molecule. To elucidate the molecular mechanism, five different sourced proteins including soy protein isolates (SPIs), whey protein isolates (WPIs), edible dock protein (EDP), Tenebrio molitor protein (TMP), and yeast protein (YP) were used to prepare protein hydrogels for delivering myricetin (Myr). The results suggested that the loading capacity order of Myr in different protein hydrogels was EDP (11.5%) > WPI (9.3%) > TMP (8.9%) > YP (8.0%) > SPI (7.6%), which was consistent with the sequence of binding affinity between Myr and different proteins. Among five protein hydrogels, EDP had an optimum loading ability since it possessed the highest hydrophobic amino acid content (45.52%) and thus provided a broad hydrophobic cavity for loading Myr. In addition, these protein-Myr composite hydrogels displayed the core-shell structure, wherein hydrogen bonding and hydrophobic interaction were the primary binding forces between proteins and Myr. Moreover, the thermal stability, storage stability, and sustained-release properties of Myr were significantly enhanced via these protein delivery systems. These findings can provide scientific guidance for deeper utilization of food alternative protein sources.


Asunto(s)
Flavonoides , Micelas , Flavonoides/química , Hidrogeles
15.
Mycology ; 15(1): 17-29, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38558845

RESUMEN

Colorectal cancer (CRC) is a prevalent tumour with high morbidity rates worldwide, and its incidence among younger populations is rising. Early diagnosis of CRC can help control the associated mortality. Fungi are common microorganisms in nature. Recent studies have shown that fungi may have a similar association with tumours as bacteria do. As an increasing number of tumour-associated fungi are discovered, this provides new ideas for the diagnosis and prognosis of tumours. The relationship between fungi and colorectal tumours has also been recently identified by scientists. Therefore, this paper describes the limitations and prospects of the application of fungi in diagnosing CRC and predicting CRC prognosis.

16.
Sci Rep ; 14(1): 7683, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561502

RESUMEN

Helicobacter pylori (H. pylori), known for causing gastric inflammation, gastritis and gastric cancer, prompted our study to investigate the differential expression of cytokines in gastric tissues, which is crucial for understanding H. pylori infection and its potential progression to gastric cancer. Focusing on Il-1ß, IL-6, IL-8, IL-12, IL-18, and TNF-α, we analysed gene and protein levels to differentiate between H. pylori-infected and non-infected gastritis. We utilised real-time quantitative polymerase chain reaction (RT-qPCR) for gene quantification, immunohistochemical staining, and ELISA for protein measurement. Gastric samples from patients with gastritis were divided into three groups: (1) non-gastritis (N-group) group, (2) gastritis without H. pylori infection (G-group), and (3) gastritis with H. pylori infection (GH-group), each consisting of 8 samples. Our findings revealed a statistically significant variation in cytokine expression. Generally, cytokine levels were higher in gastritis, but in H. pylori-infected gastritis, IL-1ß, IL-6, and IL-8 levels were lower compared to H. pylori-independent gastritis, while IL-12, IL-18, and TNF-α levels were higher. This distinct cytokine expression pattern in H. pylori-infected gastritis underscores a unique inflammatory response, providing deeper insights into its pathogenesis.


Asunto(s)
Gastritis , Infecciones por Helicobacter , Helicobacter pylori , Helicobacter , Neoplasias Gástricas , Humanos , Citocinas/metabolismo , Helicobacter pylori/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Helicobacter/metabolismo , Interleucina-8/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Gastritis/patología , Interleucina-12/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/metabolismo , Mucosa Gástrica/metabolismo
17.
Thorac Cancer ; 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38682829

RESUMEN

INTRODUCTION: Lung adenocarcinoma (LUAD) is a common pathological type of lung cancer. The presence of lymph node metastasis plays a crucial role in determining the overall treatment approach and long-term prognosis for early LUAD, therefore accurate prediction of lymph node metastasis is essential to guide treatment decisions and ultimately improve patient outcomes. METHODS: We performed transcriptome sequencing on T1 LUAD patients with positive or negative lymph node metastases and combined this data with The Cancer Genome Atlas Program cohort to identify potential risk molecules at the tissue level. Subsequently, by detecting the expression of these risk molecules by real-time quantitative PCR in serum samples, we developed a model to predict the risk of lymph node metastasis from a training cohort of 96 patients and a validation cohort of 158 patients. RESULTS: Through transcriptome sequencing analysis of tissue samples, we identified 11 RNA (miR-412, miR-219, miR-371, FOXC1, ID1, MMP13, COL11A1, PODXL2, CXCL13, SPOCK1 and MECOM) associated with positive lymph node metastases in T1 LUAD. As the expression of FOXC1 and COL11A1 was not detected in serum, we constructed a predictive model that accurately identifies patients with positive lymph node metastases using the remaining nine RNA molecules in the serum of T1 LUAD patients. In the training set, the model achieved an area under the curve (AUC) of 0.89, and in the validation set, the AUC was 0.91. CONCLUSIONS: We have established a new risk prediction model using serum samples from T1 LUAD patients, enabling noninvasive identification of those with positive lymph node metastases.

18.
Materials (Basel) ; 17(8)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38673273

RESUMEN

The direct growth of III-V quantum dot (QD) lasers on silicon substrate has been rapidly developing over the past decade and has been recognized as a promising method for achieving on-chip light sources in photonic integrated circuits (PICs). Up to date, O- and C/L-bands InAs QD lasers on Si have been extensively investigated, but as an extended telecommunication wavelength, the E-band QD lasers directly grown on Si substrates are not available yet. Here, we demonstrate the first E-band (1365 nm) InAs QD micro-disk lasers epitaxially grown on Si (001) substrates by using a III-V/IV hybrid dual-chamber molecular beam epitaxy (MBE) system. The micro-disk laser device on Si was characterized with an optical threshold power of 0.424 mW and quality factor (Q) of 1727.2 at 200 K. The results presented here indicate a path to on-chip silicon photonic telecom-transmitters.

19.
Pharmaceutics ; 16(4)2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38675155

RESUMEN

Currently, there is still a lack of effective carriers with minimal side effects to deliver therapeutic miRNA. Thus, it is crucial to optimize novel drug delivery systems. MiR-375 has proven superior therapeutic potency in Hepatocellular carcinoma (HCC). The purpose of this study was to fabricate 2 novel and smart nano-carriers for the transportation efficiency of miR-375 in HCC cells and enhance its anti-tumor effects. We established the miR-375 construct through the pEGP- miR expression vector. Two nano-carriers of solid/liquid lipids and chitosan (CS) were strategically selected, prepared by high-speed homogenization, and optimized by varying nano-formulation factors. Thus, the two best nano-formulations were designated as F1 (0.5% CS) and F2 (1.5% CS) and were evaluated for miR-375 conjugation efficiency by gel electrophoresis and nanodrop assessment. Then, physio-chemical characteristics and stability tests for the miR-375 nano-plexes were all studied. Next, its efficiencies as replacement therapy in HepG2 cells have been assessed by fluorescence microscopy, flow cytometry, and cytotoxicity assay. The obtained data showed that two cationic nanostructured solid/liquid lipid carriers (NSLCs); F1 and F2 typically had the best physio-chemical parameters and long-term stability. Moreover, both F1 and F2 could form nano-plexes with the anionic miR-375 construct at weight ratios 250/1 and 50/1 via electrostatic interactions. In addition, these nano-plexes exhibited physical stability after three months and protected miR-375 from degradation in the presence of 50% fetal bovine serum (FBS). Furthermore, both nano-plexes could simultaneously deliver miR-375 into HepG2 cells and they ensure miR re-expression even in the presence of 50% FBS compared to free miR-375 (p-value < 0.001). Moreover, both F1 and F2 alone significantly exhibited minimal cytotoxicity in treated cells. In contrast, the nano-plexes significantly inhibited cell growth compared to free miR-375 or doxorubicin (DOX), respectively. More importantly, F2/miR-375 nano-plex exhibited more anti-proliferative activity in treated cells although its IC50 value was 55 times lower than DOX (p-value < 0.001). Collectively, our findings clearly emphasized the multifunctionality of the two CS-coated NSLCs in terms of their enhanced biocompatibility, biostability, conjugation, and transfection efficiency of therapeutic miR-375. Therefore, the NSLCs/miR-375 nano-plexes could serve as a novel and promising therapeutic strategy for HCC.

20.
Exp Neurol ; 377: 114784, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38642665

RESUMEN

Inflammation is one of the key injury factors for spinal cord injury (SCI). Exosomes (Exos) derived from M2 macrophages have been shown to inhibit inflammation and be beneficial in SCI animal models. However, lacking targetability restricts their application prospects. Considering that chemokine receptors increase dramatically after SCI, viral macrophage inflammatory protein II (vMIP-II) is a broad-spectrum chemokine receptor binding peptide, and lysosomal associated membrane protein 2b (Lamp2b) is the key membrane component of Exos, we speculated that vMIP-II-Lamp2b gene-modified M2 macrophage-derived Exos (vMIP-II-Lamp2b-M2-Exo) not only have anti-inflammatory properties, but also can target the injured area by vMIP-II. In this study, using a murine contusive SCI model, we revealed that vMIP-II-Lamp2b-M2-Exo could target the chemokine receptors which highly expressed in the injured spinal cords, inhibit some key chemokine receptor signaling pathways (such as MAPK and Akt), further inhibit proinflammatory factors (such as IL-1ß, IL-6, IL-17, IL-18, TNF-α, and iNOS), and promote anti-inflammatory factors (such as IL-4 and Arg1) productions, and the transformation of microglia/macrophages from M1 into M2. Moreover, the improved histological and functional recoveries were also found. Collectively, our results suggest that vMIP-II-Lamp2b-M2-Exo may provide neuroprotection by targeting the injured spinal cord, inhibiting some chemokine signals, reducing proinflammatory factor production and modulating microglia/macrophage polarization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...