Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
CNS Neurosci Ther ; 29(11): 3460-3478, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37269088

RESUMEN

INTRODUCTION: As a devastating neurological disease, spinal cord injury (SCI) results in severe tissue loss and neurological dysfunction. Pregnane X receptor (PXR) is a ligand-activated nuclear receptor with a major regulatory role in xenobiotic and endobiotic metabolism and recently has been implicated in the central nervous system. In the present study, we aimed to investigate the role and mechanism of PXR in SCI. METHODS: The clip-compressive SCI model was performed in male wild-type C57BL/6 (PXR+/+ ) and PXR-knockout (PXR-/- ) mice. The N2a H2 O2 -induced injury model mimicked the pathological process of SCI in vitro. Pregnenolone 16α-carbonitrile (PCN), a mouse-specific PXR agonist, was used to activate PXR in vivo and in vitro. The siRNA was applied to knock down the PXR expression in vitro. Transcriptome sequencing analysis was performed to discover the relevant mechanism, and the NRF2 inhibitor ML385 was used to validate the involvement of PXR in influencing the NRF2/HO-1 pathway in the SCI process. RESULTS: The expression of PXR decreased after SCI and reached a minimum on the third day. In vivo, PXR knockout significantly improved the motor function of mice after SCI, meanwhile, inhibited apoptosis, inflammation, and oxidative stress induced by SCI. On the contrary, activation of PXR by PCN negatively influenced the recovery of SCI. Mechanistically, transcriptome sequencing analysis revealed that PXR activation downregulated the mRNA level of heme oxygenase-1 (HO-1) after SCI. We further verified that PXR deficiency activated the NRF2/HO-1 pathway and PXR activation inhibited this pathway in vitro. CONCLUSION: PXR is involved in the recovery of motor function after SCI by regulating NRF2/HO-1 pathway.


Asunto(s)
Receptor X de Pregnano , Traumatismos de la Médula Espinal , Animales , Masculino , Ratones , Hemo-Oxigenasa 1/genética , Hemo-Oxigenasa 1/metabolismo , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Receptor X de Pregnano/deficiencia , Receptor X de Pregnano/genética , Traumatismos de la Médula Espinal/genética , Traumatismos de la Médula Espinal/metabolismo
2.
Acta Pharmacol Sin ; 44(10): 2075-2090, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37344564

RESUMEN

Renal fibrosis is a common pathological feature of chronic kidney disease (CKD) with various etiologies, which seriously affects the structure and function of the kidney. Pregnane X receptor (PXR) is a member of the nuclear receptor superfamily and plays a critical role in regulating the genes related to xenobiotic and endobiotic metabolism in mammals. Previous studies show that PXR is expressed in the kidney and has protective effect against acute kidney injury (AKI). In this study, we investigated the role of PXR in CKD. Adenine diet-induced CKD (AD) model was established in wild-type and PXR humanized (hPXR) mice, respectively, which were treated with pregnenolone-16α-carbonitrile (PCN, 50 mg/kg, twice a week for 4 weeks) or rifampicin (RIF, 10 mg·kg-1·d-1, for 4 weeks). We showed that both PCN and RIF, which activated mouse and human PXR, respectively, improved renal function and attenuated renal fibrosis in the two types of AD mice. In addition, PCN treatment also alleviated renal fibrosis in unilateral ureter obstruction (UUO) mice. On the contrary, PXR gene deficiency exacerbated renal dysfunction and fibrosis in both adenine- and UUO-induced CKD mice. We found that PCN treatment suppressed the expression of the profibrotic Wnt7a and ß-catenin in AD mice and in cultured mouse renal tubular epithelial cells treated with TGFß1 in vitro. We demonstrated that PXR was colocalized and interacted with p53 in the nuclei of tubular epithelial cells. Overexpression of p53 increased the expression of Wnt7a, ß-catenin and its downstream gene fibronectin. We further revealed that p53 bound to the promoter of Wnt7a gene to increase its transcription and ß-catenin activation, leading to increased expression of the downstream profibrotic genes, which was inhibited by PXR. Taken together, PXR activation alleviates renal fibrosis in mice via interacting with p53 and inhibiting the Wnt7a/ß-catenin signaling pathway.


Asunto(s)
Receptor X de Pregnano , Insuficiencia Renal Crónica , Vía de Señalización Wnt , Animales , Humanos , Ratones , beta Catenina/metabolismo , Fibrosis , Mamíferos/metabolismo , Receptor X de Pregnano/metabolismo , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/tratamiento farmacológico , Transducción de Señal , Proteína p53 Supresora de Tumor/metabolismo , Rifampin/farmacología
3.
EBioMedicine ; 76: 103855, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35123268

RESUMEN

As a major social and economic burden for the healthcare system, kidney diseases contribute to the constant increase of worldwide deaths. A deeper understanding of the underlying mechanisms governing the etiology, development and progression of kidney diseases may help to identify potential therapeutic targets. As a superfamily of ligand-dependent transcription factors, nuclear receptors (NRs) are critical for the maintenance of normal renal function and their dysfunction is associated with a variety of kidney diseases. Increasing evidence suggests that ligands for NRs protect patients from renal ischemia/reperfusion (I/R) injury, drug-induced acute kidney injury (AKI), diabetic nephropathy (DN), renal fibrosis and kidney cancers. In the past decade, some breakthroughs have been made for the translation of NR ligands into clinical use. This review summarizes the current understanding of several important NRs in renal physiology and pathophysiology and discusses recent findings and applications of NR ligands in the management of kidney diseases.


Asunto(s)
Lesión Renal Aguda , Nefropatías Diabéticas , Daño por Reperfusión , Lesión Renal Aguda/etiología , Lesión Renal Aguda/patología , Nefropatías Diabéticas/patología , Fibrosis , Humanos , Riñón/patología , Riñón/fisiología , Receptores Citoplasmáticos y Nucleares/genética , Daño por Reperfusión/patología
4.
Sheng Li Xue Bao ; 73(5): 795-804, 2021 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-34708236

RESUMEN

Farnesoid X receptor (FXR) has been identified as an inhibitor of platelet function and an inducer of fibrinogen protein complex. However, the regulatory mechanism of FXR in hemostatic system remains incompletely understood. In this study, we aimed to investigate the functions of FXR in regulating antithrombin III (AT III). C57BL/6 mice and FXR knockout (FXR KO) mice were treated with or without GW4064 (30 mg/kg per day). FXR activation significantly prolonged prothrombin time (PT) and activated partial thromboplastin time (APTT), lowered activity of activated factor X (FXa) and concentrations of thrombin-antithrombin complex (TAT) and activated factor II (FIIa), and increased level of AT III, whereas all of these effects were markedly reversed in FXR KO mice. In vivo, hepatic AT III mRNA and protein expression levels were up-regulated in wild-type mice after FXR activation, but down-regulated in FXR KO mice. In vitro study showed that FXR activation induced, while FXR knockdown inhibited, AT III expression in mouse primary hepatocytes. The luciferase assay and ChIP assay revealed that FXR can bind to the promoter region of AT III gene where FXR activation increased AT III transcription. These results suggest FXR activation inhibits coagulation process via inducing hepatic AT III expression in mice. The present study reveals a new role of FXR in hemostatic homeostasis and indicates that FXR might act as a potential therapeutic target for diseases related to hypercoagulation.


Asunto(s)
Antitrombina III , Hepatocitos , Receptores Citoplasmáticos y Nucleares , Animales , Coagulación Sanguínea , Hígado , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores Citoplasmáticos y Nucleares/genética
5.
Am J Physiol Renal Physiol ; 321(5): F617-F628, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34569253

RESUMEN

The ligand-activated nuclear receptor, farnesoid X receptor (FXR), plays a pivotal role in regulating renal function. Activation of FXR by its specific agonists exerts renoprotective action in animals with acute kidney injury (AKI). In the present study, we aimed to identify naturally occurring agonists of FXR with potential as therapeutic agents in renal ischemia-reperfusion injury. In vitro and in vivo FXR activation was determined by a dual-luciferase assay, docking analysis, site-directed mutagenesis, and whole kidney transcriptome analysis. Wild-type (WT) and FXR knockout (FXR-/-) mice were used to determine the effect of potential FXR agonist on renal ischemia-reperfusion injury (IRI). We found that alisol B 23-acetate (ABA), a major active triterpenoid extracted from Alismatis rhizoma, a well-known traditional Chinese medicine, can activate renal FXR and induce FXR downstream gene expression in mouse kidney. ABA treatment significantly attenuated renal ischemia-reperfusion-induced AKI in WT mice but not in FXR-/- mice. Our results demonstrate that ABA can activate renal FXR to exert renoprotection against ischemia-reperfusion injury-induced AKI. Therefore, ABA may represent a potential therapeutic agent in the treatment of ischemic AKI.NEW & NOTEWORTHY In the present study, we found that alisol B 23-acetate (ABA), an identified natural farnesoid X receptor (FXR) agonist from the well-known traditional Chinese medicine Alismatis rhizoma, protects against ischemic acute kidney injury (AKI) in an FXR-dependent manner, as reflected by improved renal function, reduced renal tubular apoptosis, ameliorated oxidative stress, and suppressed inflammatory factor expression. Therefore, ABA may have great potential as a novel therapeutic agent in the treatment of AKI in the future.


Asunto(s)
Lesión Renal Aguda/prevención & control , Colestenonas/farmacología , Medicamentos Herbarios Chinos/farmacología , Riñón/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/agonistas , Daño por Reperfusión/prevención & control , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/patología , Animales , Apoptosis/efectos de los fármacos , Modelos Animales de Enfermedad , Células HEK293 , Células Hep G2 , Humanos , Mediadores de Inflamación/metabolismo , Riñón/metabolismo , Riñón/patología , Ligandos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Oxidativo/efectos de los fármacos , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/patología , Transducción de Señal
6.
Bioorg Chem ; 102: 104065, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32663670

RESUMEN

Pulmonary fibrosis is a progressive, irreversible, and fatal fibrotic lung disease with a high mortality and morbidity, and commonly nonresponsive to conventional therapy. Inula japonica Thunb. is a traditional Chinese medicine, known as "Xuan Fu Hua" in Chinese, and has been widely applied to relieve cough and dyspnea and eliminate retained phlegm with a long history. In this study, we aimed to evaluate the anti-fibrosis effect and action mechanism of I. japonica extract (IJE) for the treatment of bleomycin (BLM)-induced pulmonary fibrosis in mice. IJE treatment significantly restored BLM-induced alterations in body weight loss and lung function decline, decreased the collagen deposition induced by BLM in lung tissues, and inhibited fibrotic and inflammatory factors, such as α-SMA, TGF-ß1, TNF-α, IL-6, COX-2, NF-κB, and GSK3ß, in a dose-dependent manner. We found that IJE could enhance the concentration of 8,9-epoxyeicosatrienoic acid (8,9-EET) and decrease concentrations of 8,9-dihydroxyeicosatrienoic acid (8,9-DHET), 11,12-DHET, and 14,15-DHET in BLM-induced mice. Meanwhile, IJE suppressed protein and mRNA expression levels of soluble epoxide hydrolase (sEH), and significantly displayed the inhibition of sEH activity with an IC50 value of 0.98 µg/mL. Our results indicated that IJE exerted remarkable anti-fibrosis effect on BLM-induced pulmonary fibrosis in mice via inhibiting sEH activity, resulting in the regulation of GSK3ß signaling pathway. Our findings revealed the underlying action mechanism of I. japonica, and suggested that I. japonica could be regarded as a candidate resource for the treatment of pulmonary fibrosis.


Asunto(s)
Epóxido Hidrolasas/antagonistas & inhibidores , Inula/química , Medicina Tradicional China/métodos , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/tratamiento farmacológico , Animales , Bleomicina/efectos adversos , Humanos , Ratones
7.
J Clin Lab Anal ; 34(8): e23306, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32207210

RESUMEN

BACKGROUND: Diverse and circumstantial evidence suggests that schizophrenia is a neurodevelopmental disorder. Genes contributing to neurodevelopment may be potential candidates for schizophrenia. The human SOX11 gene is a member of the developmentally essential SOX (Sry-related HMG box) transcription factor gene family and mapped to chromosome 2p, a potential candidate region for schizophrenia. METHODS: Our previous genome-wide association study (GWAS) implicated an involvement of SOX11 with schizophrenia in a Chinese Han population. To further investigate the association between SOX11 polymorphisms and schizophrenia, we performed an independent replication case-control association study in a sample including 768 cases and 1348 controls. RESULTS: After Bonferroni correction, four SNPs in SOX11 distal 3'UTR significantly associated with schizophrenia in the allele frequencies: rs16864067 (allelic P = .0022), rs12478711 (allelic P = .0009), rs2564045 (allelic P = .0027), and rs2252087 (allelic P = .0025). The haplotype analysis of the selected SNPs showed different haplotype frequencies for two blocks (rs4371338-rs7596062-rs16864067-rs12478711 and rs2564045-rs2252087-rs2564055-rs1366733) between cases and controls. Further luciferase assay and electrophoretic mobility shift assay (EMSA) revealed the schizophrenia-associated SOX11 SNPs may influence SOX11 gene expression, and the risk and non-risk alleles may have different affinity to certain transcription factors and can recruit divergent factors. CONCLUSIONS: Our results suggest SOX11 as a susceptibility gene for schizophrenia, and SOX11 polymorphisms and haplotypes in the distal 3'UTR of the gene might modulate transcriptional activity by serving as cis-regulatory elements and recruiting transcriptional activators or repressors. Also, these SNPs may potentiate as diagnostic markers for the disease.


Asunto(s)
Regiones no Traducidas 3'/genética , Predisposición Genética a la Enfermedad/genética , Polimorfismo de Nucleótido Simple/genética , Factores de Transcripción SOXC/genética , Esquizofrenia/genética , Adolescente , Adulto , Pueblo Asiatico/genética , Estudios de Casos y Controles , Línea Celular Tumoral , China , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Desequilibrio de Ligamiento , Masculino , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...