Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Lipids Health Dis ; 16(1): 153, 2017 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-28807032

RESUMEN

BACKGROUND: Acetaminophen (APAP) overdose is one of the most common causes of acute liver failure in many countries. The aim of the study was to describe the profiling of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) in the plasma and liver of Acetaminophen -induced liver injured mice. METHODS: A time course study was carried out using C57BL/6 mice after intraperitoneal administration of 300 mg/kg Acetaminophen 1 h, 3 h, 6 h, 12 h and 24 h. A high-throughput liquid chromatography mass spectrometry (LC-MS) lipidomic method was utilized to detect phosphatidylcholine and phosphatidylethanolamine species in the plasma and liver. The expressions of phosphatidylcholine and phosphatidylethanolamine metabolism related genes in liver were detected by quantitative Reverse transcription polymerase chain reaction (qRT-PCR) and Western-blot. RESULTS: Following Acetaminophen treatment, the content of many PC and PE species in plasma increased from 1 h time point, peaked at 3 h or 6 h, and tended to return to baseline at 24 h time point. The relative contents of almost all PC species in liver decreased from 1 h, appeared to be lowest at 6 h, and then return to normality at 24 h, which might be partly explained by the suppression of phospholipases mRNA expressions and the induction of choline kinase (Chka) expression. Inconsistent with PC profile, the relative contents of many PE species in liver increased upon Acetaminophen treatment, which might be caused by the down-regulation of phosphatidylethanolamine N-methyltransferase (Pemt). CONCLUSIONS: Acetaminophen overdose induced dramatic change of many PC and PE species in plasma and liver, which might be caused by damaging hepatocytes and interfering the phospholipid metabolism in Acetaminophen -injured liver.


Asunto(s)
Acetaminofén/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Hígado/efectos de los fármacos , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Colina Quinasa/genética , Colina Quinasa/metabolismo , Cromatografía Liquida , Regulación de la Expresión Génica , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Inyecciones Intraperitoneales , Hígado/metabolismo , Hígado/patología , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Fosfatidiletanolamina N-Metiltransferasa/genética , Fosfatidiletanolamina N-Metiltransferasa/metabolismo , Fosfolipasas/genética , Fosfolipasas/metabolismo
2.
Exp Mol Med ; 49(1): e283, 2017 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-28082742

RESUMEN

We sought to identify common key regulators and build a gene-metabolite network in different nonalcoholic fatty liver disease (NAFLD) phenotypes. We used a high-fat diet (HFD), a methionine-choline-deficient diet (MCDD) and streptozocin (STZ) to establish nonalcoholic fatty liver (NAFL), nonalcoholic steatohepatitis (NASH) and NAFL+type 2 diabetes mellitus (T2DM) in rat models, respectively. Transcriptomics and metabolomics analyses were performed in rat livers and serum. A functional network-based regulation model was constructed using Cytoscape with information derived from transcriptomics and metabolomics. The results revealed that 96 genes, 17 liver metabolites and 4 serum metabolites consistently changed in different NAFLD phenotypes (>2-fold, P<0.05). Gene-metabolite network analysis identified ccl2 and jun as hubs with the largest connections to other genes, which were mainly involved in tumor necrosis factor, P53, nuclear factor-kappa B, chemokine, peroxisome proliferator activated receptor and Toll-like receptor signaling pathways. The specifically regulated genes and metabolites in different NAFLD phenotypes constructed their own networks, which were mainly involved in the lipid and fatty acid metabolism in HFD models, the inflammatory and immune response in MCDD models, and the AMPK signaling pathway and response to insulin in HFD+STZ models. Our study identified networks showing the general and specific characteristics in different NAFLD phenotypes, complementing the genetic and metabolic features in NAFLD with hepatic and extra-hepatic manifestations.


Asunto(s)
Regulación de la Expresión Génica , Redes Reguladoras de Genes , Redes y Vías Metabólicas , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Fenotipo , Animales , Biomarcadores , Diabetes Mellitus Tipo 2 , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Hígado/metabolismo , Hígado/patología , Masculino , Metaboloma , Metabolómica/métodos , Enfermedad del Hígado Graso no Alcohólico/sangre , Enfermedad del Hígado Graso no Alcohólico/diagnóstico , Ratas , Reproducibilidad de los Resultados , Transducción de Señal , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA