Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
One Health ; 18: 100744, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38725960

RESUMEN

The emergence of SARS-CoV-2 in 2019 and its rapid spread throughout the world has caused the largest pandemic of our modern era. The zoonotic origin of this pathogen highlights the importance of the One Health concept and the need for a coordinated response to this kind of threats. Since its emergence, the virus has caused >7 million deaths worldwide. However, the animal source for human outbreaks remains unknown. The ability of the virus to jump between hosts is facilitated by the presence of the virus receptor, the highly conserved angiotensin-converting enzyme 2 (ACE2), found in various mammals. Positivity for SARS-CoV-2 has been reported in various species, including domestic animals and livestock, but their potential role in bridging viral transmission to humans is still unknown. Additionally, the virus has evolved over the pandemic, resulting in variants with different impacts on human health. Therefore, suitable animal models are crucial to evaluate the susceptibility of different mammalian species to this pathogen and the adaptability of different variants. In this work, we established a transgenic mouse model that expresses the feline ACE2 protein receptor (cACE2) under the human cytokeratin 18 (K18) gene promoter's control, enabling high expression in epithelial cells, which the virus targets. Using this model, we assessed the susceptibility, pathogenicity, and transmission of SARS-CoV-2 variants. Our results show that the sole expression of the cACE2 receptor in these mice makes them susceptible to SARS-CoV-2 variants from the initial pandemic wave but does not enhance susceptibility to omicron variants. Furthermore, we demonstrated efficient contact transmission of SARS-CoV-2 between transgenic mice that express either the feline or the human ACE2 receptor.

2.
Biomed Pharmacother ; 169: 115882, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37984300

RESUMEN

An archetypal anti-inflammatory compound against cytokine storm would inhibit it without suppressing the innate immune response. AG5, an anti-inflammatory compound, has been developed as synthetic derivative of andrographolide, which is highly absorbable and presents low toxicity. We found that the mechanism of action of AG5 is through the inhibition of caspase-1. Interestingly, we show with in vitro generated human monocyte derived dendritic cells that AG5 preserves innate immune response. AG5 minimizes inflammatory response in a mouse model of lipopolysaccharide (LPS)-induced lung injury and exhibits in vivo anti-inflammatory efficacy in the SARS-CoV-2-infected mouse model. AG5 opens up a new class of anti-inflammatories, since contrary to NSAIDs, AG5 is able to inhibit the cytokine storm, like dexamethasone, but, unlike corticosteroids, preserves adequately the innate immunity. This is critical at the early stages of any naïve infection, but particularly in SARS-CoV-2 infections. Furthermore, AG5 showed interesting antiviral activity against SARS-CoV-2 in humanized mice.


Asunto(s)
COVID-19 , Síndrome de Liberación de Citoquinas , Humanos , Ratones , Animales , Inmunidad Innata , SARS-CoV-2 , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico
3.
J Neuroinflammation ; 20(1): 217, 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37759218

RESUMEN

BACKGROUND: Viral rewiring of host bioenergetics and immunometabolism may provide novel targets for therapeutic interventions against viral infections. Here, we have explored the effect on bioenergetics during the infection with the mosquito-borne flavivirus West Nile virus (WNV), a medically relevant neurotropic pathogen causing outbreaks of meningitis and encephalitis worldwide. RESULTS: A systematic literature search and meta-analysis pointed to a misbalance of glucose homeostasis in the central nervous system of WNV patients. Real-time bioenergetic analyses confirmed upregulation of aerobic glycolysis and a reduction of mitochondrial oxidative phosphorylation during viral replication in cultured cells. Transcriptomics analyses in neural tissues from experimentally infected mice unveiled a glycolytic shift including the upregulation of hexokinases 2 and 3 (Hk2 and Hk3) and pyruvate dehydrogenase kinase 4 (Pdk4). Treatment of infected mice with the Hk inhibitor, 2-deoxy-D-glucose, or the Pdk4 inhibitor, dichloroacetate, alleviated WNV-induced neuroinflammation. CONCLUSIONS: These results highlight the importance of host energetic metabolism and specifically glycolysis in WNV infection in vivo. This study provides proof of concept for the druggability of the glycolytic pathway for the future development of therapies to combat WNV pathology.


Asunto(s)
Fiebre del Nilo Occidental , Humanos , Animales , Ratones , Glucólisis , Sistema Nervioso Central , Brotes de Enfermedades , Perfilación de la Expresión Génica
4.
Emerg Microbes Infect ; 12(2): 2231556, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37377355

RESUMEN

West Nile virus (WNV) is a neurotropic flavivirus transmitted by the bites of infected mosquitoes. Severe forms of West Nile disease (WND) can curse with meningitis, encephalitis or acute flaccid paralysis. A better understanding of the physiopathology associated with disease progression is mandatory to find biomarkers and effective therapies. In this scenario, blood derivatives (plasma and serum) constitute the more commonly used biofluids due to its ease of collection and high value for diagnostic purposes. Therefore, the potential impact of this virus in the circulating lipidome was addressed combining the analysis of samples from experimentally infected mice and naturally WND patients. Our results unveil dynamic alterations in the lipidome that define specific metabolic fingerprints of different infection stages. Concomitant with neuroinvasion in mice, the lipid landscape was dominated by a metabolic reprograming that resulted in significant elevations of circulating sphingolipids (ceramides, dihydroceramides, and dihydrosphingomyelins), phosphatidylethanolamines and triacylglycerols. Remarkably, patients suffering from WND also displayed an elevation of ceramides, dihydroceramides, lactosylceramides, and monoacylglycerols in their sera. The dysregulation of sphingolipid metabolism by WNV may provide new therapeutic opportunities and supports the potential of certain lipids as novel peripheral biomarkers of WND progression.


Asunto(s)
Fiebre del Nilo Occidental , Virus del Nilo Occidental , Animales , Ratones , Virus del Nilo Occidental/genética , Esfingolípidos/metabolismo , Esfingolípidos/uso terapéutico , Ceramidas/metabolismo , Ceramidas/uso terapéutico , Biomarcadores/metabolismo
5.
Antimicrob Agents Chemother ; 67(4): e0168722, 2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-36920206

RESUMEN

The flavivirus life cycle is strictly dependent on cellular lipid metabolism. Polyphenols like gallic acid and its derivatives are promising lead compounds for new therapeutic agents as they can exert multiple pharmacological activities, including the alteration of lipid metabolism. The evaluation of our collection of polyphenols against West Nile virus (WNV), a representative medically relevant flavivirus, led to the identification of N,N'-(dodecane-1,12-diyl)bis(3,4,5-trihydroxybenzamide) and its 2,3,4-trihydroxybenzamide regioisomer as selective antivirals with low cytotoxicity and high antiviral activity (half-maximal effective concentrations [EC50s] of 2.2 and 0.24 µM, respectively, in Vero cells; EC50s of 2.2 and 1.9 µM, respectively, in SH-SY5Y cells). These polyphenols also inhibited the multiplication of other flaviviruses, namely, Usutu, dengue, and Zika viruses, exhibiting lower antiviral or negligible antiviral activity against other RNA viruses. The mechanism underlying their antiviral activity against WNV involved the alteration of sphingolipid metabolism. These compounds inhibited ceramide desaturase (Des1), promoting the accumulation of dihydrosphingomyelin (dhSM), a minor component of cellular sphingolipids with important roles in membrane properties. The addition of exogenous dhSM or Des1 blockage by using the reference inhibitor GT-11 {N-[(1R,2S)-2-hydroxy-1-hydroxymethyl-2-(2-tridecyl-1-cyclopropenyl)ethyl]octanamide} confirmed the involvement of this pathway in WNV infection. These results unveil the potential of novel antiviral strategies based on the modulation of the cellular levels of dhSM and Des1 activity for the control of flavivirus infection.


Asunto(s)
Flavivirus , Neuroblastoma , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Infección por el Virus Zika , Virus Zika , Animales , Chlorocebus aethiops , Humanos , Fiebre del Nilo Occidental/tratamiento farmacológico , Antivirales/uso terapéutico , Células Vero , Neuroblastoma/tratamiento farmacológico , Infección por el Virus Zika/tratamiento farmacológico , Replicación Viral
6.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36430407

RESUMEN

Flavivirus comprises globally emerging and re-emerging pathogens such as Zika virus (ZIKV), Dengue virus (DENV), and West Nile virus (WNV), among others. Although some vaccines are available, there is an unmet medical need as no effective antiviral treatment has been approved for flaviviral infections. The development of host-directed antivirals (HDAs) targeting host factors that are essential for viral replication cycle offers the opportunity for the development of broad-spectrum antivirals. In the case of flaviviruses, recent studies have revealed that neutral sphingomyelinase 2, (nSMase2), involved in lipid metabolism, plays a key role in WNV and ZIKV infection. As a proof of concept, we have determined the antiviral activity of the non-competitive nSMase2 inhibitor DPTIP against WNV and ZIKV virus. DPTIP showed potent antiviral activity with EC50 values of 0.26 µM and 1.56 µM for WNV and ZIKV, respectively. In order to unravel the allosteric binding site of DPTIP in nSMase2 and the details of the interaction, computational studies have been carried out. These studies have revealed that DPTIP could block the DK switch in nSMase2. Moreover, the analysis of the residues contributing to the binding identified His463 as a crucial residue. Interestingly, the inhibitory activity of DPTIP on the H463A mutant protein supported our hypothesis. Thus, an allosteric cavity in nSMase2 has been identified that can be exploited for the development of new inhibitors with anti-flaviviral activity.


Asunto(s)
Virus del Nilo Occidental , Infección por el Virus Zika , Virus Zika , Humanos , Esfingomielina Fosfodiesterasa , Virus del Nilo Occidental/fisiología , Antivirales/farmacología , Antivirales/uso terapéutico , Sitio Alostérico
7.
PLoS Negl Trop Dis ; 12(4): e0006290, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29684025

RESUMEN

Previous studies have shown that EBLV-1 strains exclusively hosted by Eptesicus isabellinus bats in the Iberian Peninsula cluster in a specific monophyletic group that is related to the EBLV-1b lineage found in the rest of Europe. More recently, enhanced passive surveillance has allowed the detection of the first EBLV-1 strains associated to Eptesicus serotinus south of the Pyrenees. The aim of this study is the reconstruction of the EBLV-1 phylogeny and phylodynamics in the Iberian Peninsula in the context of the European continent. We have sequenced 23 EBLV-1 strains detected on nine E. serotinus and 14 E. isabellinus. Phylogenetic analyses were performed on the first 400-bp-5' fragment of the Nucleoprotein (N) gene together with other 162 sequences from Europe. Besides, fragments of the variable region of the phosphoprotein (P) gene and the glycoprotein-polymerase (G-L) intergenic region were studied on Spanish samples. Phylogenies show that two of the new EBLV-1a strains from Iberian E. serotinus clustered together with French strains from the North of the Pyrenees, suggesting a recent expansion southwards of this subtype. The remaining seven Iberian strains from E. serotinus grouped, instead, within the cluster linked, so far, to E. isabellinus, indicating that spatial distribution prevails over species specificity in explaining rabies distribution and supporting interspecific transmission. The structure found within the Iberian Peninsula for EBLV-1b is in concordance with that described previously for E. isabellinus. Finally, we have found that the current EBLV-1 European strains could have emerged only 175 years ago according to our evolutionary dynamics analyses.


Asunto(s)
Quirópteros/virología , Lyssavirus/genética , Rabia/epidemiología , Rabia/veterinaria , Animales , Secuencia de Bases , Evolución Biológica , Europa (Continente) , Epidemiología Molecular , Filogenia , Rabia/transmisión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...