Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 11(1): 4135, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32811817

RESUMEN

Complex I is the first and the largest enzyme of respiratory chains in bacteria and mitochondria. The mechanism which couples spatially separated transfer of electrons to proton translocation in complex I is not known. Here we report five crystal structures of T. thermophilus enzyme in complex with NADH or quinone-like compounds. We also determined cryo-EM structures of major and minor native states of the complex, differing in the position of the peripheral arm. Crystal structures show that binding of quinone-like compounds (but not of NADH) leads to a related global conformational change, accompanied by local re-arrangements propagating from the quinone site to the nearest proton channel. Normal mode and molecular dynamics analyses indicate that these are likely to represent the first steps in the proton translocation mechanism. Our results suggest that quinone binding and chemistry play a key role in the coupling mechanism of complex I.


Asunto(s)
Complejo I de Transporte de Electrón/química , Simulación de Dinámica Molecular , Quinonas/química , Thermus thermophilus/enzimología , Regulación Alostérica , Proteínas Bacterianas/química , Microscopía por Crioelectrón , Cristalografía por Rayos X , Transporte de Electrón/genética , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/ultraestructura , Modelos Moleculares , NAD/química , NAD/metabolismo , Redes Neurales de la Computación , Conformación Proteica , Protones , Quinonas/metabolismo , Thermus thermophilus/genética
2.
Biochem Soc Trans ; 48(2): 337-346, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32219385

RESUMEN

Solute carrier (SLC) transporters play important roles in regulating the movement of small molecules and ions across cellular membranes. In mammals, they play an important role in regulating the uptake of nutrients and vitamins from the diet, and in controlling the distribution of their metabolic intermediates within the cell. Several SLC families also play an important role in drug transport and strategies are being developed to hijack SLC transporters to control and regulate drug transport within the body. Through the addition of amino acid and peptide moieties several novel antiviral and anticancer agents have been developed that hijack the proton-coupled oligopeptide transporters, PepT1 (SCL15A1) and PepT2 (SLC15A2), for improved intestinal absorption and renal retention in the body. A major goal is to understand the rationale behind these successes and expand the library of prodrug molecules that utilise SLC transporters. Recent co-crystal structures of prokaryotic homologues of the human PepT1 and PepT2 transporters have shed important new insights into the mechanism of prodrug recognition. Here, I will review recent developments in our understanding of ligand recognition and binding promiscuity within the SLC15 family, and discuss current models for prodrug recognition.


Asunto(s)
Transportador de Péptidos 1/fisiología , Profármacos/farmacología , Simportadores/fisiología , Animales , Transporte Biológico , Cristalografía por Rayos X , Diseño de Fármacos , Humanos , Oligopéptidos/química , Transportador de Péptidos 1/química , Simportadores/química , Valaciclovir/farmacología , Valganciclovir/farmacología
3.
Proc Natl Acad Sci U S A ; 116(3): 804-809, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30602453

RESUMEN

A major challenge in drug development is the optimization of intestinal absorption and cellular uptake. A successful strategy has been to develop prodrug molecules, which hijack solute carrier (SLC) transporters for active transport into the body. The proton-coupled oligopeptide transporters, PepT1 and PepT2, have been successfully targeted using this approach. Peptide transporters display a remarkable capacity to recognize a diverse library of di- and tripeptides, making them extremely promiscuous and major contributors to the pharmacokinetic profile of several important drug classes, including beta-lactam antibiotics and antiviral and antineoplastic agents. Of particular interest has been their ability to recognize amino acid and peptide-based prodrug molecules, thereby providing a rational approach to improving drug transport into the body. However, the structural basis for prodrug recognition has remained elusive. Here we present crystal structures of a prokaryotic homolog of the mammalian transporters in complex with the antiviral prodrug valacyclovir and the peptide-based photodynamic therapy agent, 5-aminolevulinic acid. The valacyclovir structure reveals that prodrug recognition is mediated through both the amino acid scaffold and the ester bond, which is commonly used to link drug molecules to the carrier's physiological ligand, whereas 5-aminolevulinic acid makes far fewer interactions compared with physiological peptides. These structures provide a unique insight into how peptide transporters interact with xenobiotic molecules and provide a template for further prodrug development.


Asunto(s)
Transportador de Péptidos 1/química , Profármacos/química , Staphylococcus hominis/química , Ácido Aminolevulínico/administración & dosificación , Antivirales/administración & dosificación , Fármacos Fotosensibilizantes/administración & dosificación , Valaciclovir/administración & dosificación
4.
Elife ; 72018 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-29966586

RESUMEN

Mammals produce volatile odours that convey different types of societal information. In Homo sapiens, this is now recognised as body odour, a key chemical component of which is the sulphurous thioalcohol, 3-methyl-3-sulfanylhexan-1-ol (3M3SH). Volatile 3M3SH is produced in the underarm as a result of specific microbial activity, which act on the odourless dipeptide-containing malodour precursor molecule, S-Cys-Gly-3M3SH, secreted in the axilla (underarm) during colonisation. The mechanism by which these bacteria recognise S-Cys-Gly-3M3SH and produce body odour is still poorly understood. Here we report the structural and biochemical basis of bacterial transport of S-Cys-Gly-3M3SH by Staphylococcus hominis, which is converted to the sulphurous thioalcohol component 3M3SH in the bacterial cytoplasm, before being released into the environment. Knowledge of the molecular basis of precursor transport, essential for body odour formation, provides a novel opportunity to design specific inhibitors of malodour production in humans.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Portadoras/química , Dipéptidos/metabolismo , Regulación Bacteriana de la Expresión Génica , Hexanoles/metabolismo , Odorantes/análisis , Staphylococcus hominis/metabolismo , Ácidos Sulfanílicos/metabolismo , Axila/microbiología , Axila/fisiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Transporte Biológico , Biotransformación , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cristalografía por Rayos X , Citoplasma/metabolismo , Dipéptidos/química , Hexanoles/química , Humanos , Cinética , Modelos Moleculares , Odorantes/prevención & control , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Staphylococcus hominis/genética , Especificidad por Sustrato , Ácidos Sulfanílicos/química , Sudor/química , Sudor/metabolismo , Sudor/microbiología
5.
Nature ; 494(7438): 443-8, 2013 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-23417064

RESUMEN

Complex I is the first and largest enzyme of the respiratory chain and has a central role in cellular energy production through the coupling of NADH:ubiquinone electron transfer to proton translocation. It is also implicated in many common human neurodegenerative diseases. Here, we report the first crystal structure of the entire, intact complex I (from Thermus thermophilus) at 3.3 Å resolution. The structure of the 536-kDa complex comprises 16 different subunits, with a total of 64 transmembrane helices and 9 iron-sulphur clusters. The core fold of subunit Nqo8 (ND1 in humans) is, unexpectedly, similar to a half-channel of the antiporter-like subunits. Small subunits nearby form a linked second half-channel, which completes the fourth proton-translocation pathway (present in addition to the channels in three antiporter-like subunits). The quinone-binding site is unusually long, narrow and enclosed. The quinone headgroup binds at the deep end of this chamber, near iron-sulphur cluster N2. Notably, the chamber is linked to the fourth channel by a 'funnel' of charged residues. The link continues over the entire membrane domain as a flexible central axis of charged and polar residues, and probably has a leading role in the propagation of conformational changes, aided by coupling elements. The structure suggests that a unique, out-of-the-membrane quinone-reaction chamber enables the redox energy to drive concerted long-range conformational changes in the four antiporter-like domains, resulting in translocation of four protons per cycle.


Asunto(s)
Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/metabolismo , Thermus thermophilus/química , Benzoquinonas/química , Benzoquinonas/metabolismo , Membrana Celular/metabolismo , Cristalografía por Rayos X , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , NAD/metabolismo , Oxidación-Reducción , Pliegue de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Fuerza Protón-Motriz , Protones , Thermus thermophilus/citología , Ubiquinona/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...