Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 2452, 2022 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-35508468

RESUMEN

The thermal transport properties of oriented polymers are of fundamental and practical interest. High thermal conductivities ( ≳ 50 Wm-1K-1) have recently been reported in disentangled ultra-high molecular weight polyethylene (UHMWPE) films, considerably exceeding prior reported values for oriented films. However, conflicting explanations have been proposed for the microscopic origin of the high thermal conductivity. Here, we report a characterization of the thermal conductivity and mean free path accumulation function of disentangled UHMWPE films (draw ratio ~200) using cryogenic steady-state thermal conductivity measurements and transient grating spectroscopy. We observe a marked dependence of the thermal conductivity on grating period over temperatures from 30-300 K. Considering this observation, cryogenic bulk thermal conductivity measurements, and analysis using an anisotropic Debye model, we conclude that longitudinal atomic vibrations with mean free paths around 400 nanometers are the primary heat carriers, and that the high thermal conductivity for draw ratio ≳ 150 arises from the enlargement of extended crystals with drawing. The mean free paths appear to remain limited by the extended crystal dimensions, suggesting that the upper limit of thermal conductivity of disentangled UHMWPE films has not yet been realized.

2.
J Chem Phys ; 153(22): 224112, 2020 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-33317297

RESUMEN

We describe a coupled cluster framework for coupled systems of electrons and harmonic phonons. Neutral and charged excitations are accessed via the equation-of-motion version of the theory. Benchmarks on the Hubbard-Holstein model allow us to assess the strengths and weaknesses of different coupled cluster approximations, which generally perform well for weak to moderate coupling. Finally, we report progress toward an implementation for ab initio calculations on solids and present some preliminary results on finite-size models of diamond with a linear electron-phonon coupling. We also report the implementation of electron-phonon coupling matrix elements from crystalline Gaussian type orbitals within the PySCF program package.

3.
Nat Commun ; 11(1): 6039, 2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33247101

RESUMEN

Crystalline solids exhibiting glass-like thermal conductivity have attracted substantial attention both for fundamental interest and applications such as thermoelectrics. In most crystals, the competition of phonon scattering by anharmonic interactions and crystalline imperfections leads to a non-monotonic trend of thermal conductivity with temperature. Defect-free crystals that exhibit the glassy trend of low thermal conductivity with a monotonic increase with temperature are desirable because they are intrinsically thermally insulating while retaining useful properties of perfect crystals. However, this behavior is rare, and its microscopic origin remains unclear. Here, we report the observation of ultralow and glass-like thermal conductivity in a hexagonal perovskite chalcogenide single crystal, BaTiS3, despite its highly symmetric and simple primitive cell. Elastic and inelastic scattering measurements reveal the quantum mechanical origin of this unusual trend. A two-level atomic tunneling system exists in a shallow double-well potential of the Ti atom and is of sufficiently high frequency to scatter heat-carrying phonons up to room temperature. While atomic tunneling has been invoked to explain the low-temperature thermal conductivity of solids for decades, our study establishes the presence of sub-THz frequency tunneling systems even in high-quality, electrically insulating single crystals, leading to anomalous transport properties well above cryogenic temperatures.

4.
Proc Natl Acad Sci U S A ; 116(35): 17163-17168, 2019 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-31405988

RESUMEN

Thermally conductive polymer crystals are of both fundamental and practical interest for their high thermal conductivity that exceeds that of many metals. In particular, polyethylene fibers and oriented films with uniaxial thermal conductivity exceeding 50 [Formula: see text] have been reported recently, stimulating interest into the underlying microscopic thermal transport processes. While ab initio calculations have provided insight into microscopic phonon properties for perfect crystals, such properties of actual samples have remained experimentally inaccessible. Here, we report the direct observation of thermal phonons with mean free paths up to 200 nm in semicrystalline polyethylene films using transient grating spectroscopy. Many of the mean free paths substantially exceed the crystalline domain sizes measured using small-angle X-ray scattering, indicating that thermal phonons propagate ballistically within and across the nanocrystalline domains; those transmitting across domain boundaries contribute nearly one-third of the thermal conductivity. Our work provides a direct determination of thermal phonon propagation lengths in molecular solids, yielding insights into the microscopic origins of their high thermal conductivity.

6.
Nano Lett ; 19(6): 3898-3904, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31141664

RESUMEN

Manipulating heat flow in a controllable and reversible manner is a topic of fundamental and practical interest. Numerous approaches to perform thermal switching have been reported, but they typically suffer from various limitations, for instance requiring mechanical modulation of a submicron gap spacing or only operating in a narrow temperature window. Here, we report the experimental modulation of radiative heat flow by electronic gating of a graphene field effect heterostructure without any moving elements. We measure a maximum heat flux modulation of 4 ± 3% and an absolute modulation depth of 24 ± 7 mW m-2 V-1 in samples with vacuum gap distances ranging from 1 to 3 µm. The active area in the samples through which heat is transferred is ∼1 cm2, indicating the scalable nature of these structures. A clear experimental path exists to realize switching ratios as large as 100%, laying the foundation for electronic control of near-field thermal radiation using 2D materials.

7.
Opt Express ; 26(18): A729-A736, 2018 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-30184832

RESUMEN

Dynamic control of radiative heat transfer is of fundamental interest as well as for applications in thermal management and energy conversion. However, realizing high contrast control of heat flow without moving parts and with high temporal frequencies remains a challenge. Here, we propose a thermal modulation scheme based on optical pumping of semiconductors in near-field radiative contact. External photo-excitation of the semiconductor emitters leads to increases in the free carrier concentration that in turn alters the plasma frequency, resulting in modulation of near-field thermal radiation. The temporal frequency of the modulation can reach hundreds of kHz limited only by the recombination lifetime, greatly exceeding the bandwidth of methods based on temperature modulcation. Calculations based on fluctuational electrodynamics show that the heat transfer coefficient between two silicon films can be tuned from near zero to 600 Wm-2K-1 with a gap distance of 100 nm at room temperature.

8.
Nano Lett ; 18(8): 4755-4761, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-30022671

RESUMEN

Creating materials that simultaneously possess ultralow thermal conductivity, high stiffness, and damage tolerance is challenging because thermal and mechanical properties are coupled in most fully dense and porous solids. Nanolattices can fill this void in the property space because of their hierarchical design and nanoscale features. We report that nanolattices composed of 24- to 182-nm-thick hollow alumina beams in the octet-truss architecture achieved thermal conductivities as low as 2 mW m-1 K-1 at room temperature while maintaining specific stiffnesses of 0.3 to 3 MPa kg-1 m3 and the ability to recover from large deformations. These nanoarchitected materials possess the same ultralow thermal conductivities as aerogels while attaining specific elastic moduli that are nearly 2 orders of magnitude higher. Our work demonstrates a general route to realizing multifunctional materials that occupy previously unreachable regions within the material property space.

9.
Nanoscale ; 10(30): 14432-14440, 2018 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-29808882

RESUMEN

van der Waals (vdW) heterostructures are a central focus of materials science and condensed matter physics due to the novel physical phenomena and properties obtained by precisely stacking heterogeneous atomically thin layers. vdW heterostructures are expected to allow for the coherent manipulation of THz lattice vibrations and hence heat conduction due to the ability to precisely control chemical composition at the atomic scale, but little work has focused on thermal transport in these materials. Here, we report an ab initio study of thermal transport in vdW superlattices consisting of alternating transition metal dichalcogenide atomic layers. Our calculations show that the lattice vibrational spectrum and scattering rates can be precisely manipulated by the choice of each atomically thin layer, resulting in materials with novel properties such as large thermal anisotropies approaching 200 and ultralow cross-plane thermal conductivities comparable to those of amorphous materials. Our work demonstrates how coherent manipulation of phonons in vdW superlattices can expand the property space beyond that occupied by natural materials and suggests an experimental route to realize these properties.

10.
ACS Nano ; 12(3): 2474-2481, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29529374

RESUMEN

We theoretically demonstrate a near-field radiative thermal switch based on thermally excited surface plasmons in graphene resonators. The high tunability of graphene enables substantial modulation of near-field radiative heat transfer, which, when combined with the use of resonant structures, overcomes the intrinsically broadband nature of thermal radiation. In canonical geometries, we use nonlinear optimization to show that stacked graphene sheets offer improved heat conductance contrast between "ON" and "OFF" switching states and that a >10× higher modulation is achieved between isolated graphene resonators than for parallel graphene sheets. In all cases, we find that carrier mobility is a crucial parameter for the performance of a radiative thermal switch. Furthermore, we derive shape-agnostic analytical approximations for the resonant heat transfer that provide general scaling laws and allow for direct comparison between different resonator geometries dominated by a single mode. The presented scheme is relevant for active thermal management and energy harvesting as well as probing excited-state dynamics at the nanoscale.

11.
Phys Rev Lett ; 119(18): 185901, 2017 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-29219537

RESUMEN

Molecular crystals such as polyethylene are of intense interest as flexible thermal conductors, yet their intrinsic upper limits of thermal conductivity remain unknown. Here, we report a study of the vibrational properties and lattice thermal conductivity of a polyethylene molecular crystal using an ab initio approach that rigorously incorporates nuclear quantum motion and finite temperature effects. We obtain a thermal conductivity along the chain direction of around 160 W m^{-1} K^{-1} at room temperature, providing a firm upper bound for the thermal conductivity of this molecular crystal. Furthermore, we show that the inclusion of quantum nuclear effects significantly impacts the thermal conductivity by altering the phase space for three-phonon scattering. Our computational approach paves the way for ab initio studies and computational material discovery of molecular solids free of any adjustable parameters.

12.
Sci Rep ; 7(1): 5362, 2017 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-28706230

RESUMEN

Solar thermal energy conversion has attracted substantial renewed interest due to its applications in industrial heating, air conditioning, and electricity generation. Achieving stagnation temperatures exceeding 200 °C, pertinent to these technologies, with unconcentrated sunlight requires spectrally selective absorbers with exceptionally low emissivity in the thermal wavelength range and high visible absorptivity for the solar spectrum. In this Communication, we report a semiconductor-based multilayer selective absorber that exploits the sharp drop in optical absorption at the bandgap energy to achieve a measured absorptance of 76% at solar wavelengths and a low emittance of approximately 5% at thermal wavelengths. In field tests, we obtain a peak temperature of 225 °C, comparable to that achieved with state-of-the-art selective surfaces. With straightforward optimization to improve solar absorption, our work shows the potential for unconcentrated solar thermal systems to reach stagnation temperatures exceeding 300 °C, thereby eliminating the need for solar concentrators for mid-temperature solar applications such as supplying process heat.

13.
Nat Nanotechnol ; 12(9): 871-876, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28674459

RESUMEN

Charge carrier dynamics in amorphous semiconductors has been a topic of intense research that has been propelled by modern applications in thin-film solar cells, transistors and optical sensors. Charge transport in these materials differs fundamentally from that in crystalline semiconductors owing to the lack of long-range order and high defect density. Despite the existence of well-established experimental techniques such as photoconductivity time-of-flight and ultrafast optical measurements, many aspects of the dynamics of photo-excited charge carriers in amorphous semiconductors remain poorly understood. Here, we demonstrate direct imaging of carrier dynamics in space and time after photo-excitation in hydrogenated amorphous silicon (a-Si:H) by scanning ultrafast electron microscopy (SUEM). We observe an unexpected regime of fast diffusion immediately after photoexcitation, together with spontaneous electron-hole separation and charge trapping induced by the atomic disorder. Our findings demonstrate the rich dynamics of hot carrier transport in amorphous semiconductors that can be revealed by direct imaging based on SUEM.

14.
Nano Lett ; 17(6): 3675-3680, 2017 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-28505461

RESUMEN

As an emerging single elemental layered material with a low symmetry in-plane crystal lattice, black phosphorus (BP) has attracted significant research interest owing to its unique electronic and optoelectronic properties, including its widely tunable bandgap, polarization-dependent photoresponse and highly anisotropic in-plane charge transport. Despite extensive study of the steady-state charge transport in BP, there has not been direct characterization and visualization of the hot carriers dynamics in BP immediately after photoexcitation, which is crucial to understanding the performance of BP-based optoelectronic devices. Here we use the newly developed scanning ultrafast electron microscopy (SUEM) to directly visualize the motion of photoexcited hot carriers on the surface of BP in both space and time. We observe highly anisotropic in-plane diffusion of hot holes with a 15 times higher diffusivity along the armchair (x-) direction than that along the zigzag (y-) direction. Our results provide direct evidence of anisotropic hot carrier transport in BP and demonstrate the capability of SUEM to resolve ultrafast hot carrier dynamics in layered two-dimensional materials.

16.
Sci Rep ; 7: 44254, 2017 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-28290484

RESUMEN

Nanocrystalline thermoelectric materials based on Si have long been of interest because Si is earth-abundant, inexpensive, and non-toxic. However, a poor understanding of phonon grain boundary scattering and its effect on thermal conductivity has impeded efforts to improve the thermoelectric figure of merit. Here, we report an ab-initio based computational study of thermal transport in nanocrystalline Si-based materials using a variance-reduced Monte Carlo method with the full phonon dispersion and intrinsic lifetimes from first-principles as input. By fitting the transmission profile of grain boundaries, we obtain excellent agreement with experimental thermal conductivity of nanocrystalline Si [Wang et al. Nano Letters 11, 2206 (2011)]. Based on these calculations, we examine phonon transport in nanocrystalline SiGe alloys with ab-initio electron-phonon scattering rates. Our calculations show that low energy phonons still transport substantial amounts of heat in these materials, despite scattering by electron-phonon interactions, due to the high transmission of phonons at grain boundaries, and thus improvements in ZT are still possible by disrupting these modes. This work demonstrates the important insights into phonon transport that can be obtained using ab-initio based Monte Carlo simulations in complex nanostructured materials.

17.
Nano Lett ; 16(3): 1643-9, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26840052

RESUMEN

Heat conduction in graphite has been studied for decades because of its exceptionally large thermal anisotropy. While the bulk thermal conductivities along the in-plane and cross-plane directions are well-known, less understood are the microscopic properties of the thermal phonons responsible for heat conduction. In particular, recent experimental and computational works indicate that the average phonon mean free path (MFP) along the c-axis is considerably larger than that estimated by kinetic theory, but the distribution of MFPs remains unknown. Here, we report the first quantitative measurements of c-axis phonon MFP spectra in graphite at a variety of temperatures using time-domain thermoreflectance measurements of graphite flakes with variable thickness. Our results indicate that c-axis phonon MFPs have values of a few hundred nanometers at room temperature and a much narrower distribution than in isotropic crystals. At low temperatures, phonon scattering is dominated by grain boundaries separating crystalline regions of different rotational orientation. Our study provides important new insights into heat transport and phonon scattering mechanisms in graphite and other anisotropic van der Waals solids.

18.
Nat Nanotechnol ; 10(8): 701-6, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26030656

RESUMEN

Controlling thermal properties is central to many applications, such as thermoelectric energy conversion and the thermal management of integrated circuits. Progress has been made over the past decade by structuring materials at different length scales, but a clear relationship between structure size and thermal properties remains to be established. The main challenge comes from the unknown intrinsic spectral distribution of energy among heat carriers. Here, we experimentally measure this spectral distribution by probing quasi-ballistic transport near nanostructured heaters down to 30 nm using ultrafast optical spectroscopy. Our approach allows us to quantify up to 95% of the total spectral contribution to thermal conductivity from all phonon modes. The measurement agrees well with multiscale and first-principles-based simulations. We further demonstrate the direct construction of mean free path distributions. Our results provide a new fundamental understanding of thermal transport and will enable materials design in a rational way to achieve high performance.

19.
Opt Express ; 23(7): A299-308, 2015 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-25968795

RESUMEN

Hyperbolic metamaterials (HMM) are of great interest due to their ability to break the diffraction limit for imaging and enhance near-field radiative heat transfer. Here we demonstrate that an annular, transparent HMM enables selective heating of a sub-wavelength plasmonic nanowire by controlling the angular mode number of a plasmonic resonance. A nanowire emitter, surrounded by an HMM, appears dark to incoming radiation from an adjacent nanowire emitter unless the second emitter is surrounded by an identical lens such that the wavelength and angular mode of the plasmonic resonance match. Our result can find applications in radiative thermal management.

20.
Sci Rep ; 5: 9121, 2015 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-25764977

RESUMEN

Thermal conductivity measurements over variable lengths on nanostructures such as nanowires provide important information about the mean free paths (MFPs) of the phonons responsible for heat conduction. However, nearly all of these measurements have been interpreted using an average MFP even though phonons in many crystals possess a broad MFP spectrum. Here, we present a reconstruction method to obtain MFP spectra of nanostructures from variable-length thermal conductivity measurements. Using this method, we investigate recently reported length-dependent thermal conductivity measurements on SiGe alloy nanowires and suspended graphene ribbons. We find that the recent measurements on graphene imply that 70% of the heat in graphene is carried by phonons with MFPs longer than 1 micron.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...