Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38256920

RESUMEN

Rheumatoid arthritis is a systemic autoimmune inflammatory disease that affects millions of people worldwide. There are multiple disease-modifying anti-rheumatic drugs available; however, many patients do not respond to any treatment. A disintegrin and metalloproteinase 10 has been suggested as a potential new target for RA due to its role in the release of multiple pro- and anti-inflammatory factors from cell surfaces. In the present study, we determined the pharmacokinetic parameters and in vivo efficacy of a compound CID3117694 from a novel class of non-zinc-binding inhibitors. Oral bioavailability was demonstrated in the blood and synovial fluid after a 10 mg/kg dose. To test efficacy, we established the collagen-induced arthritis model in mice. CID3117694 was administered orally at 10, 30, and 50 mg/kg/day for 28 days. CID3117694 was able to dose-dependently improve the disease score, decrease RA markers in the blood, and decrease signs of inflammation, hyperplasia, pannus formation, and cartilage erosion in the affected joints compared to the untreated control. Additionally, mice treated with CID 3117694 did not exhibit any clinical signs of distress, suggesting low toxicity. The results of this study suggest that the inhibition of ADAM10 exosite can be a viable therapeutic approach to RA.

2.
Biomolecules ; 13(9)2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37759675

RESUMEN

Despite the successes of immunotherapy, melanoma remains one of the deadliest cancers, therefore, the need for innovation remains high. We previously reported anti-melanoma compounds that work by downregulating spliceosomal proteins hnRNPH1 and H2. In a separate study, we reported that these compounds were non-toxic to Balb/C mice at 50 mg/kg suggesting their utility in in vivo studies. In the present study, we aimed to assess the efficacy of these compounds by testing them in A375 cell-line xenograft in nude athymic mice. Animals were randomized into four groups (n = 12/group): 10 mg/kg vemurafenib, and 25 mg/kg 2155-14 and 2155-18 thrice a week for 15 days along with a control group. The results revealed that both 2155-14 and 2155-18 significantly decreased the growth of A375 tumors, which was comparable to vemurafenib. These results were confirmed by tumor volume, weight, and histopathological examination. In conclusion, these results demonstrate the therapeutic potential of targeting spliceosomal proteins hnRNPH1 and H2.


Asunto(s)
Melanoma , Ratones , Animales , Humanos , Vemurafenib/farmacología , Vemurafenib/uso terapéutico , Ratones Desnudos , Xenoinjertos , Línea Celular Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto , Melanoma/patología , Proliferación Celular
3.
J Cell Mol Med ; 27(12): 1750-1756, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37170687

RESUMEN

Bone remodelling is mediated by orchestrated communication between osteoclasts and osteoblasts which, in part, is regulated by coupling and anti-coupling factors. Amongst formally known anti-coupling factors, Semaphorin 4D (Sema4D), produced by osteoclasts, plays a key role in downmodulating osteoblastogenesis. Sema4D is produced in both membrane-bound and soluble forms; however, the mechanism responsible for producing sSema4D from osteoclasts is unknown. Sema4D, TACE and MT1-MMP are all expressed on the surface of RANKL-primed osteoclast precursors. However, only Sema4D and TACE were colocalized, not Sema4D and MT1-MMP. When TACE and MT1-MMP were either chemically inhibited or suppressed by siRNA, TACE was found to be more engaged in shedding Sema4D. Anti-TACE-mAb inhibited sSema4D release from osteoclast precursors by ~90%. Supernatant collected from osteoclast precursors (OC-sup) suppressed osteoblastogenesis from MC3T3-E1 cells, as measured by alkaline phosphatase activity, but OC-sup harvested from the osteoclast precursors treated with anti-TACE-mAb restored osteoblastogenesis activity in a manner that compensates for diminished sSema4D. Finally, systemic administration of anti-TACE-mAb downregulated the generation of sSema4D in the mouse model of critical-sized bone defect, whereas local injection of recombinant sSema4D to anti-TACE-mAb-treated defect upregulated local osteoblastogenesis. Therefore, a novel pathway is proposed whereby TACE-mediated shedding of Sema4D expressed on the osteoclast precursors generates functionally active sSema4D to suppress osteoblastogenesis.


Asunto(s)
Osteoclastos , Semaforinas , Animales , Ratones , Modelos Animales de Enfermedad , Metaloproteinasa 14 de la Matriz/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Semaforinas/genética , Semaforinas/metabolismo
4.
Biomolecules ; 13(2)2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36830718

RESUMEN

Despite the recent advances in melanoma therapy, the need for new targets and novel approaches to therapy is urgent. We previously reported melanoma actives that work via binding and downregulating spliceosomal proteins hnRNPH1 and H2. Given the lack of knowledge about the side effects of using spliceosomal binders in humans, an acute toxicity study was conducted to evaluate these compounds in mice. Male and female mice were treated with compounds 2155-14 and 2155-18 at 50 mg/kg/day via subcutaneous injections, and the clinical signs of distress were monitored for 21 days and compared with control mice. Additionally, the effect of the leads on blood chemistry, blood cell counts, and organs was evaluated. No significant changes were observed in the body weight, blood cell count, blood chemistry, or organs of the mice following the compound treatment. The results show that our compounds, 2155-14 and 2155-18, are not toxic for the study period of three weeks.


Asunto(s)
Melanoma , Humanos , Ratones , Masculino , Femenino , Animales
5.
ACS Biomater Sci Eng ; 8(9): 3831-3841, 2022 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-35969206

RESUMEN

Spheroidal cancer microtissues are highly advantageous for a wide range of biomedical applications, including high-throughput drug screening, multiplexed target validation, mechanistic investigation of tumor-extracellular matrix (ECM) interactions, among others. Current techniques for spheroidal tissue formation rely heavily on self-aggregation of single cancer cells and have substantial limitations in terms of cell-type-specific heterogeneities, uniformity, ease of production and handling, and most importantly, mimicking the complex native tumor microenvironmental conditions in simplistic models. These constraints can be overcome by using engineered tunable hydrogels that closely mimic the tumor ECM and elucidate pathologically relevant cell behavior, coupled with microfluidics-based high-throughput fabrication technologies to encapsulate cells and create cancer microtissues. In this study, we employ biosynthetic hybrid hydrogels composed of poly(ethylene glycol diacrylate) (PEGDA) covalently conjugated to natural protein (fibrinogen) (PEG-fibrinogen, PF) to create monodisperse microspheres encapsulating breast cancer cells for 3D culture and tumorigenic characterization. A previously developed droplet-based microfluidic system is used for rapid, facile, and reproducible fabrication of uniform cancer microspheres with either MCF7 or MDA-MB-231 (metastatic) breast cancer cells. Cancer cell-type-dependent variations in cell viability, metabolic activity, and 3D morphology, as well as microsphere stiffness, are quantified over time. Particularly, MCF7 cells grew as tight cellular clusters in the PF microspheres, characteristic of their epithelial morphology, while MDA-MB-231 cells displayed elongated and invasive morphology, characteristic of their mesenchymal and metastatic nature. Finally, the translational potential of the cancer microsphere platform toward high-throughput drug screening is also demonstrated. With high uniformity, scalability, and control over engineered microenvironments, the established cancer microsphere model can be potentially used for mechanistic studies, fabrication of modular cancer microtissues, and future drug-testing applications.


Asunto(s)
Neoplasias de la Mama , Microfluídica , Neoplasias de la Mama/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Detección Precoz del Cáncer , Femenino , Fibrinógeno , Humanos , Hidrogeles , Microesferas , Polietilenglicoles , Microambiente Tumoral
6.
Front Chem ; 10: 859822, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464218

RESUMEN

The amyloid-ß precursor protein (APP) undergoes proteolysis by ß- and γ-secretases to form amyloid-ß peptides (Aß), which is a hallmark of Alzheimer's disease (AD). Recent findings suggest a possible role of O-glycosylation on APP's proteolytic processing and subsequent fate for AD-related pathology. We have previously reported that Tyr681-O-glycosylation and the Swedish mutation accelerate cleavage of APP model glycopeptides by ß-secretase (amyloidogenic pathway) more than α-secretase (non-amyloidogenic pathway). Therefore, to further our studies, we have synthesized additional native and Swedish-mutated (glyco)peptides with O-GalNAc moiety on Thr663 and/or Ser667 to explore the role of glycosylation on conformation, secretase activity, and aggregation kinetics of Aß40. Our results show that conformation is strongly dependent on external conditions such as buffer ions and solvent polarity as well as internal modifications of (glyco)peptides such as length, O-glycosylation, and Swedish mutation. Furthermore, the level of ß-secretase activity significantly increases for the glycopeptides containing the Swedish mutation compared to their nonglycosylated and native counterparts. Lastly, the glycopeptides impact the kinetics of Aß40 aggregation by significantly increasing the lag phase and delaying aggregation onset, however, this effect is less pronounced for its Swedish-mutated counterparts. In conclusion, our results confirm that the Swedish mutation and/or O-glycosylation can render APP model glycopeptides more susceptible to cleavage by ß-secretase. In addition, this study sheds new light on the possible role of glycosylation and/or glycan density on the rate of Aß40 aggregation.

7.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35163294

RESUMEN

Understanding the mechanisms of modulators' action on enzymes is crucial for optimizing and designing pharmaceutical substances. The acute inflammatory response, in particular, is regulated mainly by a disintegrin and metalloproteinase (ADAM) 17. ADAM17 processes several disease mediators such as TNFα and APP, releasing their soluble ectodomains (shedding). A malfunction of this process leads to a disturbed inflammatory response. Chemical protease inhibitors such as TAPI-1 were used in the past to inhibit ADAM17 proteolytic activity. However, due to ADAM17's broad expression and activity profile, the development of active-site-directed ADAM17 inhibitor was discontinued. New 'exosite' (secondary substrate binding site) inhibitors with substrate selectivity raised the hope of a substrate-selective modulation as a promising approach for inflammatory disease therapy. This work aimed to develop a high-throughput screen for potential ADAM17 modulators as therapeutic drugs. By combining experimental and in silico methods (structural modeling and docking), we modeled the kinetics of ADAM17 inhibitor. The results explain ADAM17 inhibition mechanisms and give a methodology for studying selective inhibition towards the design of pharmaceutical substances with higher selectivity.


Asunto(s)
Proteína ADAM17/antagonistas & inhibidores , Proteína ADAM17/efectos de los fármacos , Proteína ADAM17/metabolismo , Proteínas ADAM/metabolismo , Sitios de Unión/efectos de los fármacos , Dominio Catalítico/efectos de los fármacos , Simulación por Computador , Evaluación Preclínica de Medicamentos/métodos , Células HEK293 , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Cinética , Inhibidores de Proteasas/farmacología , Especificidad por Sustrato/efectos de los fármacos
8.
ACS Chem Neurosci ; 12(16): 2974-2980, 2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34324289

RESUMEN

The amyloid-ß precursor protein (APP) undergoes proteolytic cleavage by α-, ß-, and γ-secretases, to determine its fate in Alzheimer's disease (AD) pathogenesis. Recent findings suggest a possible role of O-glycosylation in APP's proteolytic processing. Therefore, we synthesized native and Swedish-double-mutated APP (glyco)peptides with Tyr681-O-GalNAc. We studied conformational changes and proteolytic processing using circular dichroism (CD) spectroscopy and enzyme cleavage assay, respectively. CD analysis was carried out in four solvent systems to evaluate peptide environment and O-glycosylation induced conformational changes. The Swedish mutation and Tyr681-O-GalNAc were the key factors driving conformational changes. Furthermore, the level of α- and ß-secretase activity was increased by the presence of mutation and this effect was more pronounced for its glycosylated analogues. Our results suggest that O-glycosylation of Tyr681 can induce a conformational change in APP and affect its proteolytic processing fate toward the amyloidogenic pathway.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Secretasas de la Proteína Precursora del Amiloide , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide/genética , Glicopéptidos , Humanos , Tirosina
9.
Cell Physiol Biochem ; 55(3): 265-276, 2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34014051

RESUMEN

BACKGROUND/AIMS: Despite recent advances in melanoma drug discovery, the average overall survival of patients with late-stage metastatic melanoma is approximately 3 years, suggesting a need for new approaches and melanoma therapeutic targets. Previously we identified heterogeneous nuclear ribonucleoprotein H2 as a potential target of anti-melanoma compound 2155-14 (Palrasu et al., Cell Physiol Biochem 2019;53:656-686). In the present study, we endeavored to develop an assay to enable a high throughput screening campaign to identify drug-like molecules acting via down regulation of heterogeneous nuclear ribonucleoprotein H2 that can be used for melanoma therapy and research. METHODS: We established a cell-based platform using metastatic melanoma cell line WM266-4 expressing hnRNPH2 conjugated with green fluorescent protein to enable assay development and screening. High Content Screening assay was developed and validated in 384 well plate format, followed by miniaturization to 1,536 well plate format. RESULTS: All plate-based QC parameters were acceptable: %CV = 6.7±0.3, S/B = 21±2.1, Z' = 0.75±0.04. Pilot screen of FDA-approved drug library (n=1,400 compounds) demonstrated hit rate of 0.5%. Two compounds demonstrated pharmacological response and were authenticated by western blot analysis. CONCLUSION: We developed a highly robust HTS-amenable high content screening assay capable of monitoring down regulation of hnRNPH2. This assay is thus capable of identifying authentic down regulators of hnRNPH1 and 2 in a large compound collection and, therefore, is amenable to a large-scale screening effort.


Asunto(s)
Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/biosíntesis , Melanoma/metabolismo , Proteínas de Neoplasias/biosíntesis , Línea Celular Tumoral , Ribonucleoproteína Heterogénea-Nuclear Grupo F-H/genética , Humanos , Melanoma/genética , Melanoma/patología , Microscopía Fluorescente , Proteínas de Neoplasias/genética
10.
Pharmaceuticals (Basel) ; 14(3)2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33673639

RESUMEN

Meprin α is a zinc metalloproteinase (metzincin) that has been implicated in multiple diseases, including fibrosis and cancers. It has proven difficult to find small molecules that are capable of selectively inhibiting meprin a, or its close relative meprin b, over numerous other metzincins which, if inhibited, would elicit unwanted effects. We recently identified possible molecular starting points for meprin a-specific inhibition through an HTS effort (see part I, preceding paper). Here, in part II, we report further efforts to optimize potency and selectivity. We hope that a hydroxamic acid meprin α inhibitor probe will help define the therapeutic potential for small molecule meprin a inhibition and spur further drug discovery efforts in the area of zinc metalloproteinase inhibition.

11.
Pharmaceuticals (Basel) ; 14(3)2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33671080

RESUMEN

Meprin α and ß are zinc-dependent proteinases implicated in multiple diseases including cancers, fibrosis, and Alzheimer's. However, until recently, only a few inhibitors of either meprin were reported and no inhibitors are in preclinical development. Moreover, inhibitors of other metzincins developed in previous years are not effective in inhibiting meprins suggesting the need for de novo discovery effort. To address the paucity of tractable meprin inhibitors we developed ultrahigh-throughput assays and conducted parallel screening of >650,000 compounds against each meprin. As a result of this effort, we identified five selective meprin α hits belonging to three different chemotypes (triazole-hydroxyacetamides, sulfonamide-hydroxypropanamides, and phenoxy-hydroxyacetamides). These hits demonstrated a nanomolar to micromolar inhibitory activity against meprin α with low cytotoxicity and >30-fold selectivity against meprin ß and other related metzincincs. These selective inhibitors of meprin α provide a good starting point for further optimization.

12.
Front Mol Biosci ; 7: 75, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32435655

RESUMEN

A disintegrin and metaproteinase 10 is an important target for multiple therapeutic areas, however, despite drug discovery efforts by both industry and academia no compounds have reached the clinic so far. The lack of enzyme and substrate selectivity of developmental drugs is believed to be a main obstacle to the success. In this review, we will focus on novel approaches and associated challenges in discovery of ADAM10 selective modulators that can overcome shortcomings of previous generations of compounds and be translated into the clinic.

13.
Cell Physiol Biochem ; 53(4): 656-686, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31573152

RESUMEN

BACKGROUND/AIMS: Despite recent advances in melanoma drug discovery, the average overall survival of patients with late stage metastatic melanoma is approximately 3 years, suggesting a need for approaches that identify new melanoma targets. We have previously reported a discovery of novel anti-melanoma compound 2155-14 (Onwuha-Ekpete et al., J Med Chem. 2014 Feb 27; 57(4):1599-608). In the report presented herein we aim to identify its target(s) and mechanism of action. METHODS: We utilized biotinylated analog of 2155-14 to pull down its targets from melanoma cells. Proteomics in combination with western blot were used to identify the targets. Mechanism of action of 2155-14 was determined using flow cytometry, RT-PCR, microscopy, western blot, and enzymatic activity assays. Where applicable, one-way analysis of variance (ANOVA) was used followed by Dunnett post hoc test. RESULTS: In the present study, we identified ATP-dependent RNA helicase DDX1 and heterogeneous nuclear ribonucleoproteins (hnRNPs) H1, H2 and A2/B1 as targets of anti-melanoma compound 215514. To the best of our knowledge, this is a first report suggesting that these proteins could be targeted for melanoma therapy. Mechanistic investigations showed that 2155-14 induces ER stress leading to potentiation of basal autophagy resulting in melanoma cell death in BRAF and NRAS mutated melanoma cells. CONCLUSION: Identification of mode of action of 2155-14 may provide insight into novel therapies against a broad range of melanoma subtypes. These studies were enabled by the novel probe derived from a mixture-based library, an important class of chemical biology tools for discovering novel targets.


Asunto(s)
Apoptosis , Autofagia , ARN Helicasas DEAD-box/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Línea Celular Tumoral , ARN Helicasas DEAD-box/antagonistas & inhibidores , ARN Helicasas DEAD-box/genética , Evaluación Preclínica de Medicamentos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Ribonucleoproteínas Nucleares Heterogéneas/antagonistas & inhibidores , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Humanos , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Melanoma/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transducción de Señal/efectos de los fármacos
14.
PLoS One ; 12(11): e0187868, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29145473

RESUMEN

θ-defensins constitute a family of macrocyclic peptides expressed exclusively in Old World monkeys. The peptides are pleiotropic effectors of innate immunity, possessing broad spectrum antimicrobial activities and immunoregulatory properties. Here we report that rhesus θ-defensin 1 (RTD-1) is highly effective in arresting and reversing joint disease in a rodent model of rheumatoid arthritis (RA). Parenteral RTD-1 treatment of DA/OlaHsd rats with established pristane-induced arthritis (PIA) rapidly suppressed joint disease progression, restored limb mobility, and preserved normal joint architecture. RTD-1 significantly reduced joint IL-1ß levels compared with controls. RTD-1 dose-dependently inhibited fibroblast-like synoviocyte (FLS) invasiveness and FLS IL-6 production. Consistent with the inhibition of FLS invasiveness, RTD-1 was a potent inhibitor of arthritogenic proteases including ADAMs 17 and 10 which activate TNFα, and inhibited matrix metalloproteases, and cathepsin K. RTD-1 was non-toxic, non-immunogenic, and effective when administered as infrequently as once every five days. Thus θ-defensins, which are absent in humans, have potential as retroevolutionary biologics for the treatment of RA.


Asunto(s)
Artritis Reumatoide/prevención & control , Defensinas/farmacología , Animales , Artritis Reumatoide/inmunología , Macaca mulatta , Masculino , Ratas , Ratas Sprague-Dawley
15.
Proteomics ; 17(23-24)2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28613012

RESUMEN

Remodeling of the extracellular matrix (ECM) is crucial in development and homeostasis, but also has a significant role in disease progression. Two metalloproteinase families, the matrix metalloproteinases (MMPs) and a disintegrin and metalloproteases (ADAMs), participate in the remodeling of the ECM, either directly or through the liberation of growth factors and cell surface receptors. The correlation of MMP and ADAM activity to a variety of diseases has instigated numerous drug development programs. However, broad-based and Zn2+ -chelating MMP and ADAM inhibitors have fared poorly in the clinic. Selective MMP and ADAM inhibitors have been described recently based on (a) antibodies or antibody fragments or (b) small molecules designed to take advantage of protease secondary binding sites (exosites) or allosteric sites. Clinical trials have been undertaken with several of these inhibitors, while others are in advanced pre-clinical stages.


Asunto(s)
Ensayos Clínicos como Asunto , Diseño de Fármacos , Matriz Extracelular/química , Inhibidores de la Metaloproteinasa de la Matriz/farmacología , Metaloproteinasas de la Matriz/química , Humanos
16.
Anal Biochem ; 507: 13-7, 2016 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-27177841

RESUMEN

A fluorescent resonance energy transfer substrate with improved sensitivity for ADAM17, -10, and -9 (where ADAM represents a disintegrin and metalloproteinase) has been designed. The new substrate, Dabcyl-Pro-Arg-Ala-Ala-Ala-Homophe-Thr-Ser-Pro-Lys(FAM)-NH2, has specificity constants of 6.3 (±0.3) × 10(4) M(-1) s(-1) and 2.4 (±0.3) × 10(3) M(-1) s(-1) for ADAM17 and ADAM10, respectively. The substrate is more sensitive than widely used peptides based on the precursor tumor necrosis factor-alpha (TNF-alpha) cleavage site, PEPDAB010 or Dabcyl-Ser-Pro-Leu-Ala-Gln-Ala-Val-Arg-Ser-Ser-Lys(FAM)-NH2 and Mca-Pro-Leu-Ala-Gln-Ala-Val-Dpa-Arg-Ser-Ser-Arg-NH2. ADAM9 also processes the new peptide more than 18-fold better than the TNF-alpha-based substrates. The new substrate has a unique selectivity profile because it is processed less efficiently by ADAM8 and MMP1, -2, -3, -8, -9, -12, and -14. This substrate provides a unique tool in which to assess ADAM17, -10, and -9 activities.


Asunto(s)
Proteínas ADAM/análisis , Proteínas ADAM/metabolismo , Membrana Celular/metabolismo , Colorantes Fluorescentes/química , Proteínas ADAM/química , Línea Celular Tumoral , Transferencia Resonante de Energía de Fluorescencia , Humanos , Hidrólisis , Análisis de Regresión , Solubilidad
17.
Sci Rep ; 6(1): 11, 2016 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-28442704

RESUMEN

ADAM10 and ADAM17 have been shown to contribute to the acquired drug resistance of HER2-positive breast cancer in response to trastuzumab. The majority of ADAM10 and ADAM17 inhibitor development has been focused on the discovery of compounds that bind the active site zinc, however, in recent years, there has been a shift from active site to secondary substrate binding site (exosite) inhibitor discovery in order to identify non-zinc-binding molecules. In the present work a glycosylated, exosite-binding substrate of ADAM10 and ADAM17 was utilized to screen 370,276 compounds from the MLPCN collection. As a result of this uHTS effort, a selective, time-dependent, non-zinc-binding inhibitor of ADAM10 with Ki = 883 nM was discovered. This compound exhibited low cell toxicity and was able to selectively inhibit shedding of known ADAM10 substrates in several cell-based models. We hypothesize that differential glycosylation of these cognate substrates is the source of selectivity of our novel inhibitor. The data indicate that this novel inhibitor can be used as an in vitro and, potentially, in vivo, probe of ADAM10 activity. Additionally, results of the present and prior studies strongly suggest that glycosylated substrate are applicable as screening agents for discovery of selective ADAM probes and therapeutics.


Asunto(s)
Proteína ADAM10/antagonistas & inhibidores , Proteína ADAM17/antagonistas & inhibidores , Proteína ADAM10/química , Proteína ADAM17/química , Línea Celular Tumoral , Bases de Datos de Compuestos Químicos , Glicosilación , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Relación Estructura-Actividad , Especificidad por Sustrato
18.
Eur J Med Chem ; 106: 167-79, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26547055

RESUMEN

The aim of this study was the synthesis and lead structure selection of a best anti-leukemic agent from a library of aza-podophyllotoxin analogues (APTs). To this end, we report a scalable, modified multicomponent reaction using a "sacrificial" aniline partner as a more general route to rapidly construct the pivotal library of 50 APT analogues. Our preliminary structure activity relationship studies for anti-leukemic activity also address the innate toxicity of these compounds against non-malignant cells. As a result, we identified 2 novel compounds 2ca' and 2jc' more potent than etoposide 1 (25-60 fold) having high selectivity against the human THP-1 leukemia cell line and a minimal toxicity (IC50 of 9.3 ± 0.8 and 19.6 ± 1.4 nM respectively) which represent the best candidates for further pharmacological optimization.


Asunto(s)
Antineoplásicos/farmacología , Leucemia/tratamiento farmacológico , Leucemia/patología , Podofilotoxina/análogos & derivados , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Células HEK293 , Humanos , Estructura Molecular , Podofilotoxina/síntesis química , Podofilotoxina/química , Podofilotoxina/farmacología , Relación Estructura-Actividad , Azul de Tripano/química
19.
J Med Chem ; 58(15): 5808-24, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26192023

RESUMEN

ADAM17 is implicated in several debilitating diseases. However, drug discovery efforts targeting ADAM17 have failed due to the utilization of zinc-binding inhibitors. We previously reported discovery of highly selective nonzinc-binding exosite-targeting inhibitors of ADAM17 that exhibited not only enzyme isoform selectivity but synthetic substrate selectivity as well ( J. Biol. Chem. 2013, 288, 22871). As a result of SAR studies presented herein, we obtained several highly selective ADAM17 inhibitors, six of which were further characterized in biochemical and cell-based assays. Lead compounds exhibited low cellular toxicity and high potency and selectivity for ADAM17. In addition, several of the leads inhibited ADAM17 in a substrate-selective manner, which has not been previously documented for inhibitors of the ADAM family. These findings suggest that targeting exosites of ADAM17 can be used to obtain highly desirable substrate-selective inhibitors. Additionally, current inhibitors can be used as probes of biological activity of ADAM17 in various in vitro and, potentially, in vivo systems.


Asunto(s)
Proteínas ADAM/antagonistas & inhibidores , Sondas Moleculares , Proteína ADAM17 , Animales , Células CHO , Línea Celular , Cricetinae , Cricetulus , Humanos , Técnicas In Vitro , Relación Estructura-Actividad , Especificidad por Sustrato
20.
J Med Chem ; 57(22): 9598-611, 2014 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-25330343

RESUMEN

Matrix metalloproteinase 13 (MMP-13) has been shown to be the main collagenase responsible for degradation of articular cartilage during osteoarthritis and therefore represents a target for drug development. As a result of high-throughput screening and structure-activity relationship studies, we identified a novel, highly selective class of MMP-13 inhibitors (compounds 1 (Q), 2 (Q1), and 3 (Q2)). Mechanistic characterization revealed a noncompetitive nature of these inhibitors with binding constants in the low micromolar range. Crystallographic analyses revealed two binding modes for compound 2 in the MMP-13 S1' subsite and in an S1/S2* subsite. Type II collagen- and cartilage-protective effects exhibited by compounds 1, 2, and 3 suggested that these compounds might be efficacious in future in vivo studies. Finally, these compounds were also highly selective when tested against a panel of 30 proteases, which, in combination with a good CYP inhibition profile, suggested low off-target toxicity and drug-drug interactions in humans.


Asunto(s)
Cartílago Articular/efectos de los fármacos , Metaloproteinasa 13 de la Matriz/química , Inhibidores de la Metaloproteinasa de la Matriz/química , Animales , Sitios de Unión , Cartílago/metabolismo , Cartílago Articular/metabolismo , Bovinos , Química Farmacéutica/métodos , Colágeno/química , Colagenasas/química , Cristalografía por Rayos X/métodos , Sistema Enzimático del Citocromo P-450/química , Diseño de Fármacos , Humanos , Hidrólisis , Concentración 50 Inhibidora , Cinética , Ratones , Microsomas/efectos de los fármacos , Conformación Molecular , Osteoartritis/fisiopatología , Unión Proteica , Conformación Proteica , Ratas , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...