Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 18(8): e0289535, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37535601

RESUMEN

Acquired resistance to oxaliplatin is considered as the primary reason for failure in colorectal cancer (CRC) therapy. Identifying the underlying resistance mechanisms may improve CRC treatment. The present study aims to identify the key genes involved in acquired oxaliplatin-resistant in CRC by confirming the oxaliplatin resistance index (OX-RI). To this aim, two public microarray datasets regarding oxaliplatin-resistant CRC cells with different OX-RI, GSE42387, and GSE76092 were downloaded from GEO database to identify differentially expressed genes (DEGs). The results indicated that the OX-RI affects the gene expression pattern significantly. Then, 54 common DEGs in both datasets including 18 up- and 36 down-regulated genes were identified. Protein-protein interaction (PPI) analysis revealed 13 up- (MAGEA6, TGM2, MAGEA4, SCHIP1, ECI2, CD33, AKAP12, MAGEA12, CALD1, WFDC2, VSNL1, HMGA2, and MAGEA2B) and 12 down-regulated (PDZK1IP1, FXYD3, ALDH2, CEACAM6, QPRT, GRB10, TM4SF4, LGALS4, ALDH3A1, USH1C, KCNE3, and CA12) hub genes. In the next step, two novel up-regulated hub genes including ECI2 and SCHIP1 were identified to be related to oxaliplatin resistance. Functional enrichment and pathway analysis indicated that metabolic pathways, proliferation, and epithelial-mesenchymal transition may play dominant roles in CRC progression and oxaliplatin resistance. In the next procedure, two in vitro oxaliplatin-resistant sub-lines including HCT116/OX-R4.3 and HCT116/OX-R10 cells with OX-IR 3.93 and 10.06 were established, respectively. The results indicated the up-regulation of TGM2 and HMGA2 in HCT116/OX-R10 cells with high OX-RI and down-regulation of FXYD3, LGALS4, and ECI2 in both cell types. Based on the results, TGM2, HMGA2, FXYD3, and LGALS4 genes are related to oxaliplatin-resistant CRC and may serve as novel therapeutic targets.


Asunto(s)
Neoplasias Colorrectales , Galectina 4 , Humanos , Oxaliplatino/farmacología , Oxaliplatino/uso terapéutico , Galectina 4/genética , Galectina 4/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Biología de Sistemas , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Factores de Transcripción/genética , Regulación Neoplásica de la Expresión Génica , Resistencia a Antineoplásicos/genética , Biología Computacional , Proteínas de la Membrana/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Aldehído Deshidrogenasa Mitocondrial/genética
2.
Front Pharmacol ; 14: 1144632, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37502217

RESUMEN

Introduction: Sentrin-specific protease 1 (SENP1) is a protein whose main function is deSUMOylation. SENP1 inhibits apoptosis, and increases angiogenesis, estrogen and androgen receptor transcription and c-Jun transcription factor, proliferation, growth, cell migration, and invasion of cancer. The in vivo and in vitro studies also demonstrated which natural compounds, especially phytochemicals, minerals, and vitamins, prevent cancer. More than 3,000 plant species have been reported in modern medicine. Natural compounds have many anti-cancerous andanti-turmeric properties such as antioxidative, antiangiogenic, antiproliferative, and pro-apoptotic properties. Methods: In this study, we investigated the interaction of some natural compounds with SENP1 to inhibit its activity. We also screened the ZINC database including natural compounds. Molecular docking was performed, and toxicity of compounds was determined; then, molecular dynamics simulation (MDS) and essential dynamics (ED) were performed on natural compounds with higher free binding energies and minimal side effects. By searching in a large library, virtual screening of the ZINC database was performed using LibDock and CDOCKER, and the final top 20 compounds were allowed for docking against SENP1. According to the docking study, the top three leading molecules were selected and further analyzed by MDS and ED. Results: The results suggest that resveratrol (from the selected compounds) and ZINC33916875 (from the ZINC database) could be more promising SENP1 inhibitory ligands. Discussion: Because these compounds can inhibit SENP1 activity, then they can be novel candidates for cancer treatment. However, wet laboratory experiments are needed to validate their efficacy as SENP1 inhibitors.

3.
Avicenna J Med Biotechnol ; 15(2): 108-117, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37034893

RESUMEN

Background: Breast carcinogenesis involves both genetic and epigenetic changes. DNA methylation, as well as micro-RNA regulations, are the significant epigenetic phenomena dysregulated in breast cancer. Herein, the expression of DACH1 as a tumor suppressor gene and its promoter methylation status was analyzed in breast cancer tumors. Also, the expression of three micro RNAs (miR-217, miR-6807-3p, and miR-552), which had been previously reported to target DACH1, was assessed. Methods: The SYBR green-based Real-Time reverse transcription-PCR was used to determine DACH1 and micro-RNAs (miR-217, miR-6807-3p, and miR-552) expression in 120 ductal breast cancer tumors compared with standard control. Also, the promoter methylation pattern of DACH1 was investigated using the Methylation-specific PCR technique. Results: DACH1 expression was significantly down-regulated in breast tumors (p<0.05). About 33.5% of tumors showed DACH1 promoter hyper-methylation. The studied micro-RNAs, expression was negatively correlated with DACH1 expression. The highest expressions of miRNAs and higher DACH1 promoter methylation were observed in advanced cancer situations. The Kaplan-Meier survival curves indicated that the overall survival was significantly poor in higher miRNAs and lower DACH1 expression in breast cancer patients (p<0.002). Conclusion: DACH1 down-regulation may be associated with a poor breast cancer prognosis. The DACH1 down-regulation may be due to epigenetic regulations such as promoter methylation, especially in triple-negative cases. Other factors, such as micro-RNAs (miR-217, miR-6807-3p, and miR-552), may also have an impact. The elevated expression of miR-217, miR-6807-3p, and miR-552, maybe candidates as possible poor prognostic biomarkers in breast cancer management for further consideration.

4.
Gut Pathog ; 15(1): 11, 2023 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-36895013

RESUMEN

BACKGROUND: Interferon and nucleos(t)ide analogues are current therapeutic treatments for chronic Hepatitis B virus (HBV) infection with the limitations of a functional cure. Chrysin (5, 7-dihydroxyflavone) is a natural flavonoid, known for its antiviral and hepatoprotective activities. However, its anti-HBV activity is unexplored. METHODS: In the present study, the anti-hepatitis B activity of chrysin was investigated using the in vitro experimental cell culture model, HepG2 cells. In silico studies were performed where chrysin and lamivudine (used here as a positive control) were docked with high mobility group box 1 protein (HMGB1). For the in vitro studies, wild type HBV genome construct (pHBV 1.3X) was transiently transfected in HepG2. In culture supernatant samples, HBV surface antigen (HBsAg) and Hepatitis B e antigen (HBeAg) were measured by enzyme-linked immunosorbent assay (ELISA). Secreted HBV DNA and intracellular covalently closed circular DNA (cccDNA) were measured by SYBR green real-time PCR. The 3D crystal structure of HMGB1 (1AAB) protein was developed and docked with the chrysin and lamivudine. In silico drug-likeness, Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) properties of finest ligands were performed by using SwissADME and admetSAR web servers. RESULTS: Data showed that chrysin significantly decreases HBeAg, HBsAg secretion, supernatant HBV DNA and cccDNA, in a dose dependent manner. The docking studies demonstrated HMGB1 as an important target for chrysin as compared to lamivudine. Chrysin revealed high binding affinity and formed a firm kissing complex with HMGB1 (∆G = - 5.7 kcal/mol), as compared to lamivudine (∆G = - 4.3 kcal/mol), which might be responsible for its antiviral activity. CONCLUSIONS: The outcome of our study establishes chrysin as a new antiviral against HBV infection. However, using chrysin to treat chronic HBV disease needs further endorsement and optimization by in vivo studies in animal models.

5.
Front Pharmacol ; 13: 817990, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35431915

RESUMEN

Aims: Sentrin-specific protease -2 (SENP2) is involved in deSUMOylation. Increased deSUMOylation in murine hearts by SENP2 upregulation resulted in cardiac dysfunction and congenital heart defects. Natural compounds via regulating cell proliferation and survival, induce cell cycle cessation, cell death, apoptosis, and producing reactive oxygen species and various enzyme systems cause disease prevention. Then, natural compounds can be suitable inhibitors and since SENP2 is a protein involved in heart disease, so our aim was inhibition of SENP2 by natural products for heart disease treatment. Material and methods: Molecular docking and molecular dynamics simulation of natural products i.e. Gallic acid (GA), Caffeic acid (CA), Thymoquinone (TQ), Betanin, Betanidin, Fisetin, and Ebselen were done to evaluate the SENP2 inhibitory effect of these natural products. The toxicity of compounds was also predicted. Results: The results showed that Betanin constituted a stable complex with SENP2 active site as it revealed low RMSD, high binding energy, and hydrogen bonds. Further, as compared to Ebselen, Betanin demonstrated low toxicity, formed a stable complex with SENP2 via four to seven hydrogen bonds, and constituted more stable MD plots. Therefore, depending upon the outcomes presented herein, Betanin significantly inhibited SENP2 and hence may be considered as a suitable natural compound for the treatment of heart failure. Further clinical trials must be conducted to validate its use as a potential SENP2 inhibitor.

6.
Am J Cancer Res ; 12(1): 371-380, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35141024

RESUMEN

Early detection of colorectal cancer (CRC) increases the chances of survival and reduces the therapeutic problems and costs of treatment. Since molecular biomarkers can help us diagnose colorectal cancer early, we need to identify novel gene for predicting the early stages of tumorigenesis. Here, we integrated five independent CRC gene expression datasets derived from expression profiling by array comparing CRC with normal samples in: GSE21510, GSE4107, GSE25071, GSE15781 dataset, and GSE8671 dataset, including 64 samples from 32 patients comparing 32 colonic normal mucosa with 32 colorectal adenoma. To detect genes that expressed differentially in experimental circumstances of these datasets, we used web tool of GEO2R to compare groups of samples in the GEO data series. Furthermore, we constructed the protein-protein interactions network by STRING database for mostly downregulated genes and the expression of their members in PPI network were studied into five datasets separately. Also, the level of expression of selected biomarker genes in different stages of CRC compared to normal was studied. Our data revealed 17 common downregulated genes (average fold change (FC) in five tests ≥6) in CRC in comparison with normal (Test 1 to Test 4) and in adenoma compared with normal (Test 5). Studying of gene expression of PPI network members of these downregulated genes led to identifying of CLCA1, SELENBP1, CWC25, ACOT11, GUCY2C and ALDH1A1 as suppressor genes and PTGS2, PROCR, MOCS3 and NFS1 as oncogenes which respectively downregulated and upregulated in CRC. Since decreasing of gene expression was seen in CRC comparing with normal and due to no different expression seen for these 10 genes in adenoma, they, especially CLCA1 and SELENBP1, could be considered as biomarkers for early detection of CRC. Before using these signature genes in the clinic; however, further validations are required.

7.
Biotechnol Appl Biochem ; 69(4): 1576-1586, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34319618

RESUMEN

The high incidence rate of CRC demands early diagnosis of the disease and readiness of diagnostic biomarker. In present study, we have investigated c-MYC, AXIN1, and COL11A1 expression levels in course of CRC progression and their correlation with demographics and clinical risk factors. Fifty-five tumors and 41 normal tissues were obtained from Tumor Bank of Iran, total RNA was extracted, cDNA was synthesized, and RT-qPCR was performed. Results were analyzed using Rest 2009 and SPSS software. Analysis at mRNA level showed upregulation of the two genes; c-MYC with a p-value of 0.001 and COL11A1 with an observed p-value of 0.02, while a p-value of 0.04 indicated AXIN1 downregulation. The observed overexpression of COL11A1 in stage 0 compared to other stages of CRC asserts importance of this gene in CRC prognosis. Moreover, statistical analysis confirms a significant correlation between expression of these genes and several clinical risk factors of CRC. Our study supports the importance of the studied genes and provides further information regarding the molecular mechanism of CRC. Further studies on these genes could elucidate their pivotal role for both early detection and/or diagnosis of CRC in addition to have important biomarkers for CRC management available.


Asunto(s)
Neoplasias Colorrectales , Proteína Axina/genética , Proteína Axina/metabolismo , Biomarcadores de Tumor/genética , Colágeno Tipo XI/genética , Colágeno Tipo XI/metabolismo , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Expresión Génica , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Pronóstico , Proteínas Proto-Oncogénicas c-myc , ARN Mensajero , Regulación hacia Arriba
8.
J Biomol Struct Dyn ; 40(14): 6228-6242, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-33533323

RESUMEN

The SENP1 (Sentrin-Specific Protease1) is essential for desumoylation. SENP1 plays an essential role in many diseases such as cardiovascular disease, diabetes and cancer via targeting GATA2, NEMO, Pin1, SMAD4 and HIF-1α for deSUMOylation. Considering that, over expression of SENP1 was reported in cancer, thus an optional inhibitor of SENP1 can restitute the balance to the skewed system of SUMO and act as an effective therapeutic agent. The purpose of this study was to select and to sort inhibitors with a stronger binding affinity with SENP1. Molecular docking of SENP1 with natural compounds including Gallic acid, Caffeic acid, Thymoquinone, Thymol, Betaine, Alkannin, Ellagic acid, Betanin, Shikonin, Betanidin and Momordin IC was performed using AutoDock 4, then docking complexes for molecular dynamics (MD) simulation with GROMACS 4.6.5 were applied. Results with RMSD, RMSF, SASA, DSSP, gyrate, H-bond, ADMET and TOPKAT measurements, binding energy and structural features were surveyed. Among those, Gallic acid has shown the most significant results including RMSD and RMSF plots with high stability, high hydrogen bonds, high binding energy and the highest intermolecular bonds with SENP1. Gallic acid demonstrated strong connections and results of toxicity better than Momordin as control. Gallic acid is a phenolic compound which affects several pharmacological and biochemical pathways and has strong antioxidant, anti-inflammatory, antimutagenic and anticancer properties. Further research can improve the appropriate use of plant products drastically. Basic, pre-clinical and clinical research on Gallic acid may provide a roadmap for its ultimate application in the field of cancer prevention.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Antineoplásicos , Péptido Hidrolasas , Antineoplásicos/farmacología , Cisteína Endopeptidasas , Ácido Gálico/farmacología , Simulación del Acoplamiento Molecular
9.
J Biomol Struct Dyn ; 40(19): 9114-9125, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33998969

RESUMEN

N-glycosylation is a complex mechanism in which the carbohydrate molecules bind to the Asn amino acid in the N-glycan consensus sequence (AsnXxxThr/Ser sequon, where Xxx is any residue, excluding Pro). Introduction of additional N-linked glycosylation site into proposed location in the protein causes to its hyper-glycosylation and can enhance the protein characteristics to provide promising prospects in treatment. Glycoengineering is a favorably used strategy to design and generate hyper-glycosylated variants. In this research, human follicle-stimulating hormone (HuFSH) was considered to identify appropriate positions for adding novel N-glycan sites. A rational computational strategy was applied to predict functional/structural variations induced through changes in polypeptide chain. We analyzed the amino acid chain of FSH to find out the proper locations to introduce asparagine and/or threonine for creating novel N-glycan positions. This analysis resulted in the recognition of 40 possible N-glycosylation positions, and then the eight adequate ones were chosen for additional investigation. The model validation techniques were used to examine 3-dimensional structures of the chosen mutant proteins. Finally, 2 mutants with a further glycan site were recommended as eligible FSH hyper-glycosylated analogs, which may be regarded for subsequent experimental studies. Our in silico approach may decrease tedious and time-wasting laboratory researches of the mutants.Communicated by Ramaswamy H. Sharma.


Asunto(s)
Biología Computacional , Hormona Folículo Estimulante Humana , Humanos , Glicosilación , Asparagina , Aminoácidos
10.
Life Sci ; 292: 120122, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34748762

RESUMEN

AIMS: Bethanidine (BW467C60) is a newly presented strong adrenergic neuron blocking factor which has a hypotensive operation in man. SENPs are essential for maintaining a balance between SUMOylation and deSUMOylation which can be disturbed by changing the expression of (sentrin-specific proteases) SENPs. SENP1 is the most studied isoform of SENPs. Hypertrophic stimuli can increase SENP1 expression using calcium/calcineurin-NFAT3 signaling in heart. Moreover, SENP1 expression may positively relate to the expression of mitochondrial genes of the heart, and can cause the heart and mitochondrial dysfunction. MATERIALS AND METHODS: In order to inhibit SENP1 using Bethanidine, molecular docking and molecular dynamics (MD) simulation of SENP1 with Bethanidine were performed. Molecular docking showed that Bethanidine can inhibit SENP1. KEY FINDINGS: MD Simulation showed that Bethanidine constitutes a stable complex with SENP1 as was evident from RMSD, RMSF, H-bond and DSSP plots. Free binding energy and the interaction patterns were obtained from molecular docking, and MD trajectory exhibited Bethanidine can be a potential drug candidate for SENP1 inhibition. SIGNIFICANCE: This study supplies enough evidences that Bethanidine is a potential inhibitor of SENP1 and can be applied for the treatment of cardiovascular diseases.


Asunto(s)
Betanidina/química , Enfermedades Cardiovasculares/tratamiento farmacológico , Cisteína Endopeptidasas/química , Humanos , Unión Proteica , Sumoilación
11.
Front Pharmacol ; 12: 700454, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276383

RESUMEN

Sentrin specific-protease 1 (SENP1) is a protein involved in deSUMOylation that is almost overexpressed in cancer. SENP1 has a determinative role in the activation of transcription programs in the innate immune responses and the development B of and C lymphocytes. We found, SENP1 possibly plays a critical role in immune infiltration and acts as an expression marker in PAAD, ESCA, and THYM. CD4+ T cells, CD8+ T cells, and macrophages were more key-related immune cells, indicating that SENP1 might be introduced as a potential target for cancer immunotherapy. We further showed that dysregulation of SENP1 is powerfully associated with decreased patient survival and clinical stage. Total SENP1 protein also increases in cancer. SENP1 is also controlled by transcription factors (TFs) CREB1, KDM5A, REST, and YY1 that regulates apoptosis, cell cycle, cell proliferation, invasion, tumorigenesis, and metastasis. These TFs were in a positive correlation with SENP1. MiR-138-5p, miR-129-1-3p, and miR-129-2-3p also inhibit tumorigenesis through targeting of SENP1. The SENP1 expression level positively correlated with the expression levels of UBN1, SP3, SAP130, NUP98, NUP153 in 32 tumor types. SENP1 and correlated and binding genes: SAP130, NUP98, and NUP153 activated cell cycle. Consistent with this finding, drug analysis was indicated SENP1 is sensitive to cell cycle, apoptosis, and RTK signaling regulators. In the end, SENP1 and its expression-correlated and functional binding genes were enriched in cell cycle, apoptosis, cellular response to DNA damage stimulus. We found that the cell cycle is the main way for tumorigenesis by SENP1. SENP1 attenuates the effect of inhibitory drugs on the cell cycle. We also introduced effective FDA-Approved drugs that can inhibit SENP1. Therefore in the treatments in which these drugs are used, SENP1 inhibition is a suitable approach. This study supplies a wide analysis of the SENP1 across The Cancer Genome Atlas (CGA) cancer types. These results suggest the potential roles of SENP1 as a biomarker for cancer. Since these drugs and the drugs that cause to resistance are applied to cancer treatment, then these two class drugs can use to inhibition of SENP1.

12.
PLoS One ; 15(5): e0233088, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32401824

RESUMEN

Microglial activation can release free radicals and various pro-inflammatory cytokines, which implicates the progress of a neurodegenerative disease. Therefore suppression of microglial activation can be an appropriate strategy for combating neurodegenerative diseases. Betanin is a red food dye that acts as free radical scavenger and can be a promising candidate for this purpose. In this study, purification of betanin from red beetroots was carried out by normal phase colum chromatography, yielding 500 mg of betanin from 100 g of red beetroot. The purified betanin was evaluated by TLC, UV-visible, HPLC, ESI-MASS, FT-IR spectroscopy. Investigation on the inhibitory effect of betanin on activated microglia was performed using primary microglial culture. The results showed that betanin significantly inhibited lipopolysaccharide induced microglial function including the production of nitric oxide free radicals, reactive oxygen species, tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and interleukin-1 beta (IL-1ß). Moreover, betanin modulated mitochondrial membrane potential, lysosomal membrane permeabilization and adenosine triphosphate. We further investigated the interaction of betanin with TNF-α, IL-6 and Nitric oxide synthase (iNOS or NOS2) using in silico molecular docking analysis. The docking results demonstrated that betanin have significant negative binding energy against active sites of TNF-α, IL-6 and iNOS.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/aislamiento & purificación , Antioxidantes/farmacología , Beta vulgaris/química , Betacianinas/aislamiento & purificación , Betacianinas/farmacología , Lipopolisacáridos/farmacología , Microglía/efectos de los fármacos , Animales , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Citometría de Flujo , Microglía/metabolismo , Simulación del Acoplamiento Molecular , Ratas , Ratas Wistar
13.
Comput Biol Chem ; 85: 107231, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32065960

RESUMEN

BACKGROUND: Metastasis is the main cause of breast cancer (BC) lethality, especially in early stages, led to improvements in therapeutic procedures. Lately, by improvements in our perception of biological processes and immune system new classes of vaccines are emerged that grant us the opportunity of designing resolute constructs against desired antigens. In the current study, we used a variety of immunoinformatics tools to design a novel cancer vaccine against Preferentially Expressed Antigen of Melanoma (PRAME), which counts as a cancer testis antigen for various human cancers including BC. The PRAME up-regulation leads to strengthen BC stem cells maintenance, drug resistance, cell survival, adaptation, and apoptosis evading in cancerous cells. METHODS AND RESULTS: The PRAME co-expressed genes were mined and validated through BC RNA-sequencing of TCGA data. The immunodominant T-cell predicted epitopes were fused and engineered to form the vaccine. The safety, allergenicity, and immunogenic capabilities of the vaccine were confirmed by promising immunoinformatics tools. The vaccine's structure was verified to be hydrophilic in most areas through Kyte and Doolittle hydrophobicity plotting. The interactions between the designed vaccine and immune receptors of TLR4 and IL1R were confirmed by protein-protein docking after modeling its tertiary structure. Finally, codon optimization and in silico cloning were performed to guarantee better in-vivo results. CONCLUSION: In conclusion, concerning in silico assessments' results in this study, the designed vaccine can potentially boost immune responses against PRAME, therefore may decrease BC development and metastasis. According to the mined PRAME co-expressed genes and their functional annotation, cell cycle regulation is the prime mechanism opted by this construct and its adjacent regulatory genes along boosting immune reactions.


Asunto(s)
Antígenos de Neoplasias/inmunología , Neoplasias de la Mama/inmunología , Biología Computacional , Péptidos/inmunología , Reacciones Antígeno-Anticuerpo , Antígenos de Neoplasias/genética , Vacunas contra el Cáncer/inmunología , Femenino , Humanos
14.
Oxid Med Cell Longev ; 2019: 1297484, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31772697

RESUMEN

Hepatitis B virus (HBV) infection is one of the major causes of liver diseases, which can lead to hepatocellular carcinoma. The role of HBV envelope proteins is crucial in viral morphogenesis, infection, and propagation. Thus, blocking the pleiotropic functions of these proteins especially the PreS1 and PreS2 domains of the large surface protein (LHBs) is a promising strategy for designing efficient antivirals against HBV infection. Unfortunately, the structure of the LHBs protein has not been elucidated yet, and it seems that any structure-based drug discovery is critically dependent on this. To find effective inhibitors of LHBs, we have modeled and validated its three-dimensional structure and subsequently performed a virtual high-throughput screening against the ZINC database using RASPD and ParDOCK tools. We have identified four compounds, ZINC11882026, ZINC19741044, ZINC00653293, and ZINC15000762, showing appreciable binding affinity with the LHBs protein. The drug likeness was further validated using ADME screening and toxicity analysis. Interestingly, three of the four compounds showed the formation of hydrogen bonds with amino acid residues lying in the capsid binding region of the PreS1 domain of LHBs, suggesting the possibility of inhibiting the viral assembly and maturation process. The identification of potential lead molecules will help to discover more potent inhibitors with significant antiviral activities.


Asunto(s)
Hepatitis B/prevención & control , Simulación del Acoplamiento Molecular/métodos , Proteínas del Envoltorio Viral/metabolismo , Humanos
15.
Mol Biol Rep ; 46(5): 5371-5388, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31385238

RESUMEN

Drug resistance is a complex phenomenon during leishmaniasis chemotherapy. In this study, the genes and pathways involved in miltefosine (MIL)-resistant Leishmania were identified using microarray data and in silico approaches. GSE30685 and GSE45496 were obtained from GEO database and analyzed with GEO2R tool to identify genes involved in MIL-resistant Leishmania. 177 differentially expressed genes (DEGs) were selected from these GSEs, which about half of them were uncharacterized/hypothetical proteins. The interactions between DEGs were investigated using STRING database and protein-protein interaction (PPI) networks. Five hub nodes were found in the PPI network. The gene ontology (GO) analysis of the resulting network revealed that DNA replication (GO:0006260) and ATP hydrolysis coupled proton transport (GO:0015991) were the most enriched GO term. Iranian MIL-resistant Leishmania major (L. major) parasites were generated by exposure of wild-type isolates to the increasing concentrations of MIL over a period of 5 months. Proof of mRNA expression levels of the obtained hub genes was assessed in Iranian wild-type and acquired resistant L. major parasites by real-time PCR. A significant higher expression level of LDBPK_150170 (encoding protein phosphatase 2C, PP2C), was only observed in Iranian L. major parasites resistance to MIL. Moreover, the RT-PCR results showed that the expression of metacyclic marker (small hydrophilic endoplasmic reticulum-associated protein, SHERP) and MIL-resistant marker (Leishmania MIL-transporter, LMT) was significantly increased and decreased, respectively, in Iranian MIL-resistant L. major parasites. Taken together, these data suggested that PP2C as well as SHERP and LMT genes may be prospective targets for the treatment of MIL-resistant Leishmania.


Asunto(s)
Farmacorresistencia Fúngica/genética , Leishmania major/genética , Mapas de Interacción de Proteínas/genética , Biología Computacional/métodos , Simulación por Computador , Resistencia a Medicamentos/genética , Ontología de Genes , Irán , Fosforilcolina/análogos & derivados , Fosforilcolina/farmacología
16.
Comput Biol Chem ; 79: 16-23, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30708139

RESUMEN

Glycoengineering is a recently used approach to extend serum half-life of valuable protein therapeutics. One aspect of glycoengineering is to introduce new N-glycosylation site (Asn-X-Thr/Ser, where X ≠ Pro) into desirable positions in the peptide backbone, resulting in the generation of hyper-glycosylated protein. In this study, human luteinizing hormone (LH) was considered for identification of the suitable positions for the addition of new N-linked glycosylation sites. A rational in silico approach was applied for prediction of structural and functional alterations caused by changes in amino acid sequence. As the first step, we explored the amino acid sequence of LH to find out desirable positions for introducing Asn or/and Thr to create new N-glycosylation sites. This exploration led to the identification of 38 potential N-glycan sites, and then the four acceptable ones were selected for further analysis. Three-dimensional (3D) structures of the selected analogs were generated and examined by the model evaluation methods. Finally, two analogs with one additional glycosylation site were suggested as the qualified analogs for hyper-glycosylation of the LH, which can be considered for further experimental investigations. Our computational strategy can reduce laborious and time-consuming experimental analyses of the analogs.


Asunto(s)
Biología Computacional , Hormona Luteinizante/análogos & derivados , Hormona Luteinizante/química , Glicosilación , Humanos , Hormona Luteinizante/síntesis química , Hormona Luteinizante/metabolismo
17.
Biochem Biophys Rep ; 13: 141-146, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29556568

RESUMEN

Gastric cancer is one of the most fatal cancers in the world. Many efforts in recent years have attempted to find effective proteins in gastric cancer. By using a comprehensive list of proteins involved in gastric cancer, scientists were able to retrieve interaction information. The study of protein-protein interaction networks through systems biology based analysis provides appropriate strategies to discover candidate proteins and key biological pathways. In this study, we investigated dominant functional themes and centrality parameters including betweenness as well as the degree of each topological clusters and expressionally active sub-networks in the resulted network. The results of functional analysis on gene sets showed that neurotrophin signaling pathway, cell cycle and nucleotide excision possess the strongest enrichment signals. According to the computed centrality parameters, HNF4A, TAF1 and TP53 manifested as the most significant nodes in the interaction network of the engaged proteins in gastric cancer. This study also demonstrates pathways and proteins that are applicable as diagnostic markers and therapeutic targets for future attempts to overcome gastric cancer.

18.
Sci Rep ; 8(1): 4767, 2018 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-29555910

RESUMEN

Understanding the molecular mechanisms underlying Alzheimer's disease (AD) is necessary for the diagnosis and treatment of this neurodegenerative disorder. It is therefore important to detect the most important genes and miRNAs, which are associated with molecular events, and studying their interactions for recognition of AD mechanisms. Here we focus on the genes and miRNAs expression profile, which we have detected the miRNA target genes involved in AD. These are the most quintessential to find the most important miRNA, to target genes and their important pathways. A total of 179 differentially expressed miRNAs (DEmiRs) and 1404 differentially expressed genes (DEGs) were obtained from a comprehensive meta-analysis. Also, regions specific genes with their molecular function in AD have been demonstrated. We then focused on miRNAs which regulated most genes in AD, alongside we analyzed their pathways. The miRNA-30a-5p and miRNA-335 elicited a major function in AD after analyzing the regulatory network, we showed they were the most regulatory miRNAs in the AD. In conclusion, we demonstrated the most important genes, miRNAs, miRNA-mRNA interactions and their related pathways in AD using Bioinformatics methods. Accordingly, our defined genes and miRNAs could be used for future molecular studies in the context of AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Perfilación de la Expresión Génica/métodos , MicroARNs/genética , Humanos
19.
PLoS One ; 12(7): e0181667, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28742151

RESUMEN

Increasing evidence demonstrates that inflammation and endoplasmic reticulum (ER) stress is implicated in the development and progression of age-related macular degeneration (AMD), a multifactorial neurodegenerative disease. However the cross talk between these cellular mechanisms has not been clearly and fully understood. The present study investigates a possible intersection between ER stress and inflammation in AMD. In this study, we recruited two collections of involved protein markers to retrieve their interaction information from IMEx-curated databases, which are the most well- known protein-protein interaction collections, allowing us to design an intersection network for AMD that is unprecedented. In order to find expression activated subnetworks, we utilized AMD expression profiles in our network. In addition, we studied topological characteristics of the most expressed active subnetworks to identify the hubs. With regard to topological quantifications and expressional activity, we reported a list of the most pivotal hubs which are potentially applicable as probable therapeutic targets. Furthermore, we introduced MAPK signaling pathway as a significantly involved pathway in the association between ER stress and inflammation, leading to promising new directions in discovering AMD formation mechanisms and possible treatments.


Asunto(s)
Estrés del Retículo Endoplásmico , Inflamación/inmunología , Degeneración Macular/inmunología , Mapas de Interacción de Proteínas , Proteínas/inmunología , Humanos , Inflamación/complicaciones , Inflamación/metabolismo , Inflamación/patología , Degeneración Macular/complicaciones , Degeneración Macular/metabolismo , Degeneración Macular/patología , Proteínas/metabolismo , Retina/inmunología , Retina/metabolismo , Retina/patología
20.
Amino Acids ; 49(2): 303-315, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27885528

RESUMEN

Chameleon proteins are proteins which include sequences that can adopt α-helix-ß-strand (HE-chameleon) or α-helix-coil (HC-chameleon) or ß-strand-coil (CE-chameleon) structures to operate their crucial biological functions. In this study, using a network-based approach, we examined the chameleon proteins to give a better knowledge on these proteins. We focused on proteins with identical chameleon sequences with more than or equal to seven residues long in different PDB entries, which adopt HE-chameleon, HC-chameleon, and CE-chameleon structures in the same protein. One hundred and ninety-one human chameleon proteins were identified via our in-house program. Then, protein-protein interaction (PPI) networks, Gene ontology (GO) enrichment, disease network, and pathway enrichment analyses were performed for our derived data set. We discovered that there are chameleon sequences which reside in protein-protein interaction regions between two proteins critical for their dual function. Analysis of the PPI networks for chameleon proteins introduced five hub proteins, namely TP53, EGFR, HSP90AA1, PPARA, and HIF1A, which were presented in four PPI clusters. The outcomes demonstrate that the chameleon regions are in critical domains of these proteins and are important in the development and treatment of human cancers. The present report is the first network-based functional study of chameleon proteins using computational approaches and might provide a new perspective for understanding the mechanisms of diseases helping us in developing new medical therapies along with discovering new proteins with chameleon properties which are highly important in cancer.


Asunto(s)
Biología Computacional/métodos , Bases de Datos de Proteínas , Mapas de Interacción de Proteínas , Proteínas/química , Enfermedad/etiología , Humanos , Trastornos Mentales/metabolismo , Conformación Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...