Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Oncogene ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907003

RESUMEN

Malignant transformation of T-cell progenitors causes T-cell acute lymphoblastic leukemia (T-ALL), an aggressive childhood lymphoproliferative disorder. Activating mutations of Notch, Notch1 and Notch3, have been detected in T-ALL patients. In this study, we aimed to deeply characterize hyperactive Notch3-related pathways involved in T-cell dynamics within the thymus and bone marrow to propose these processes as an important step in facilitating the progression of T-ALL. We previously generated a transgenic T-ALL mouse model (N3-ICtg) demonstrating that aberrant Notch3 signaling affects early thymocyte maturation programs and leads to bone marrow infiltration by CD4+CD8+ (DP) T cells that are notably, Notch3highCXCR4high. Newly, our in vivo results suggest that an anomalous immature thymocyte subpopulation, such as CD4-CD8- (DN) over-expressing CD3ɛ, but with low CXCR4 expression, dominates N3-ICtg thymus-resident DN subset in T-ALL progression. MicroRNAs might be of significance in T-ALL pathobiology, however, whether required for leukemia maintenance is not fully understood. The selection of specific DN subsets demonstrates the inverse correlation between CXCR4 expression and a panel of Notch3-deregulated miRNAs. Interestingly, we found that within DN thymocyte subset hyperactive Notch3 inhibits CXCR4 expression through the cooperative effects of miR-139-5p and miR-150-5p, thus impinging on thymocyte differentiation with accumulation of DNCD3ɛ+CXCR4- cells. These data point out that deregulation of Notch3 in T-ALL, besides its role in sustaining dissemination of abnormal DP T cells, as we previously demonstrated, could play a role in selecting specific DN immature T cells within the thymus, thus impeding T cell development, to facilitate T-ALL progression inside the bone marrow.

2.
Cancers (Basel) ; 15(24)2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38136266

RESUMEN

Dysregulation of the DNA damage response may contribute to the sensitization of cancer cells to DNA-targeting agents by impelling cell death. In fact, the inhibition of the DNA repair pathway is considered a promising anticancer therapeutic strategy, particularly in combination with standard-of-care agents. The xanthonoside XGAc was previously described as a potent inhibitor of cancer cell growth. Herein, we explored its antitumor activity against triple-negative breast cancer (TNBC), ovarian cancer and pancreatic ductal adenocarcinoma (PDAC) cells as a single agent and in combination with the poly(ADP-ribose) polymerase inhibitor (PARPi) olaparib. We demonstrated that XGAc inhibited the growth of TNBC, ovarian and PDAC cells by inducing cell cycle arrest and apoptosis. XGAc also induced genotoxicity, inhibiting the expression of DNA repair proteins particularly involved in homologous recombination, including BRCA1, BRCA2 and RAD51. Moreover, it displayed potent synergistic effects with olaparib in TNBC, ovarian cancer and PDAC cells. Importantly, this growth inhibitory activity of XGAc was further reinforced in a TNBC spheroid model and in patient-derived ovarian cancer cells. Also, drug-resistant cancer cells showed no cross-resistance to XGAc. Additionally, the ability of XGAc to prevent cancer cell migration was evidenced in TNBC, ovarian cancer and PDAC cells. Altogether, these results highlight the great potential of acetylated xanthonosides such as XGAc as promising anticancer agents against hard-to-treat cancers.

3.
Exp Hematol Oncol ; 12(1): 76, 2023 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-37667380

RESUMEN

T-cell acute lymphoblastic leukemia (T-ALL) is a hematologic tumor, characterized by several genetic alterations, that constitutes 15% of pediatric and 25% of adult ALL. While with current therapeutic protocols children and adults' overall survival (OS) rates reach 85-90% and 40-50%, respectively, the outcome for both pediatric and adult T-ALL patients that relapse or are refractory to induction therapy, remains extremely poor, achieving around 25% OS for both patient groups. About 60% of T-ALL patients show increased NOTCH1 activity, due to activating NOTCH1 mutations or alterations in its ubiquitin ligase FBXW7. NOTCH signaling has been shown to contribute to chemotherapy resistance in some tumor models. Hence, targeting the NOTCH1 signaling pathway may be an effective option to overcome relapsed and refractory T-ALL.Here, we focused on the therapeutic activity of the NOTCH1-specific monoclonal antibody OMP-52M51 in combination either with drugs used during the induction, consolidation, or maintenance phase in mice xenografts established from pediatric and adult relapsed NOTCH1 mutated T-ALL samples. Interestingly, from RNAseq data we observed that anti-NOTCH1 treatment in vivo affects the purine metabolic pathway. In agreement, both in vitro and in vivo, the greatest effect on leukemia growth reduction was achieved by anti-NOTCH1 therapy in combination with antimetabolite drugs. This result was further corroborated by the longer life span of mice treated with the anti-NOTCH1 in combination with antimetabolites, indicating a novel Notch-targeted therapeutic approach that could ameliorate pediatric and adult T-ALL patients outcome with relapse disease for whom so far, no other therapeutic options are available.

4.
J Exp Clin Cancer Res ; 42(1): 196, 2023 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550722

RESUMEN

BACKGROUND: Genetic and metabolic heterogeneity are well-known features of cancer and tumors can be viewed as an evolving mix of subclonal populations, subjected to selection driven by microenvironmental pressures or drug treatment. In previous studies, anti-VEGF therapy was found to elicit rewiring of tumor metabolism, causing marked alterations in glucose, lactate ad ATP levels in tumors. The aim of this study was to evaluate whether differences in the sensitivity to glucose starvation existed at the clonal level in ovarian cancer cells and to investigate the effects induced by anti-VEGF therapy on this phenotype by multi-omics analysis. METHODS: Clonal populations, obtained from both ovarian cancer cell lines (IGROV-1 and SKOV3) and tumor xenografts upon glucose deprivation, were defined as glucose deprivation resistant (GDR) or glucose deprivation sensitive (GDS) clones based on their in vitro behaviour. GDR and GDS clones were characterized using a multi-omics approach, including genetic, transcriptomic and metabolic analysis, and tested for their tumorigenic potential and reaction to anti-angiogenic therapy. RESULTS: Two clonal populations, GDR and GDS, with strikingly different viability following in vitro glucose starvation, were identified in ovarian cancer cell lines. GDR clones survived and overcame glucose starvation-induced stress by enhancing mitochondrial oxidative phosphorylation (OXPHOS) and both pyruvate and lipids uptake, whereas GDS clones were less able to adapt and died. Treatment of ovarian cancer xenografts with the anti-VEGF drug bevacizumab positively selected for GDR clones that disclosed increased tumorigenic properties in NOD/SCID mice. Remarkably, GDR clones were more sensitive than GDS clones to the mitochondrial respiratory chain complex I inhibitor metformin, thus suggesting a potential therapeutic strategy to target the OXPHOS-metabolic dependency of this subpopulation. CONCLUSION: A glucose-deprivation resistant population of ovarian cancer cells showing druggable OXPHOS-dependent metabolic traits is enriched in experimental tumors treated by anti-VEGF therapy.


Asunto(s)
Glucosa , Neoplasias Ováricas , Factor A de Crecimiento Endotelial Vascular , Animales , Femenino , Humanos , Ratones , Línea Celular Tumoral , Células Clonales/metabolismo , Células Clonales/patología , Glucosa/metabolismo , Ratones Endogámicos NOD , Ratones SCID , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Fosforilación Oxidativa , Ensayos Antitumor por Modelo de Xenoinjerto , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores
5.
Antioxidants (Basel) ; 12(3)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36978873

RESUMEN

New therapies are needed for patients with T-cell lymphoblastic leukemia (T-ALL) who do not respond to standard chemotherapy. Our previous studies showed that the mTORC1 inhibitor everolimus increases reactive oxygen species (ROS) levels, decreases the levels of NADPH and glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway (PPP), and induces apoptosis in T-ALL cells. Studies in T-ALL-xenografted NOD/SCID mice demonstrated that everolimus improved their response to the glucocorticoid (GC) dexamethasone. Here we show that verapamil, a calcium antagonist used in the treatment of supraventricular tachyarrhythmias, enhanced the effects of everolimus on ROS and cell death in T-ALL cell lines. The death-enhancing effect was synergistic and was confirmed in assays on a panel of therapy-resistant patient-derived xenografts (PDX) and primary samples from T-ALL patients. The verapamil-everolimus combination produced a dramatic reduction in the levels of G6PD and induction of p38 MAPK phosphorylation. Studies of NOD/SCID mice inoculated with refractory T-ALL PDX cells demonstrated that the addition of verapamil to everolimus plus dexamethasone significantly reduced tumor growth in vivo. Taken together, our results provide a rationale for repurposing verapamil in association with mTORC inhibitors and GC to treat refractory T-ALL.

6.
Methods Mol Biol ; 2572: 81-89, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36161409

RESUMEN

Digital pathology has the potential to quantify tumor markers accurately and reproducibly with various cellular and subcellular localizations in tissues, thus filling a need in cancer research. As a case study, we quantified the percentage of necrosis, microvessels density, and monocarboxylate transporter 4 (MCT4) expression in two ovarian cancer patient-derived xenograft (PDX) models subcutaneously injected in NOD/SCID mice. PDX models were treated with bevacizumab, an antiangiogenic drug, that targets vascular endothelial growth factor A (VEGF-A). Specific signal analysis algorithms allowed us to study morphologic, vascular, and metabolic modifications induced by antiangiogenic therapy by a quantitative, reproducible, and reliable approach.


Asunto(s)
Neoplasias Ováricas , Factor A de Crecimiento Endotelial Vascular , Inhibidores de la Angiogénesis/farmacología , Animales , Bevacizumab , Biomarcadores de Tumor/metabolismo , Carcinoma Epitelial de Ovario , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neovascularización Patológica/patología , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
7.
Redox Biol ; 51: 102268, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35248829

RESUMEN

mTOR activation is a hallmark of T-cell acute lymphoblastic leukemia (T-ALL) and is associated with resistance to glucocorticoid (GC)-based chemotherapy. We previously showed that altering redox homeostasis primes T-ALL cells to GC-induced apoptosis. Here we investigated the connection between the mTOR pathway and redox homeostasis using pharmacological inhibitors and gene silencing. In vitro studies performed on T-ALL cell lines and CG-resistant patient-derived T-ALL xenograft (PDX) cells showed that the mTOR inhibitor everolimus increased reactive oxygen species (ROS) levels, augmented lipid peroxidation, and activated the ROS-controlled transcription factor NRF2. These effects were accompanied by a decrease in the levels of NADPH and of glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme of the pentose phosphate pathway (PPP), which is a major source of cytosolic NADPH needed for maintaining the cellular ROS-scavenging capacity. The mTOR inhibitor everolimus induced mitochondrial inner membrane depolarization and dose-dependent apoptosis of T-ALL cells, but did not kill normal T-cells. Importantly, the combination of everolimus and the GC dexamethasone had a synergistic effect on killing T-ALL cells. The effects of mTOR inhibition were blunted by ROS scavengers and phenocopied by siRNA-mediated G6PD silencing. In vivo studies of NOD/SCID mice inoculated with refractory T-ALL PDX demonstrated that everolimus overcame dexamethasone resistance in conditions of high tumor burden that mimicked the clinical setting of acute leukemia. These findings provide insight into the crosstalk between mTOR and ROS homeostasis in T-ALL cells and furnish mechanistic evidence to support the combination of glucocorticoids with mTOR inhibitors as a therapeutic avenue for treating refractory T-ALL.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animales , Apoptosis , Línea Celular Tumoral , Dexametasona/farmacología , Dexametasona/uso terapéutico , Everolimus/farmacología , Everolimus/uso terapéutico , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/metabolismo , Humanos , Inhibidores mTOR , Ratones , Ratones Endogámicos NOD , Ratones SCID , NADP , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Linfocitos T/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
8.
Nat Commun ; 12(1): 2507, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33947863

RESUMEN

Notch1 is a crucial oncogenic driver in T-cell acute lymphoblastic leukemia (T-ALL), making it an attractive therapeutic target. However, the success of targeted therapy using γ-secretase inhibitors (GSIs), small molecules blocking Notch cleavage and subsequent activation, has been limited due to development of resistance, thus restricting its clinical efficacy. Here, we systematically compare GSI resistant and sensitive cell states by quantitative mass spectrometry-based phosphoproteomics, using complementary models of resistance, including T-ALL patient-derived xenografts (PDX) models. Our datasets reveal common mechanisms of GSI resistance, including a distinct kinase signature that involves protein kinase C delta. We demonstrate that the PKC inhibitor sotrastaurin enhances the anti-leukemic activity of GSI in PDX models and completely abrogates the development of acquired GSI resistance in vitro. Overall, we highlight the potential of proteomics to dissect alterations in cellular signaling and identify druggable pathways in cancer.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Antineoplásicos/farmacología , Resistencia a Antineoplásicos , Oligopéptidos/farmacología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Proteína Quinasa C/metabolismo , Receptor Notch1/antagonistas & inhibidores , Acetofenonas/farmacología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Antineoplásicos/uso terapéutico , Benzopiranos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Inmunoprecipitación de Cromatina , Cromatografía Líquida de Alta Presión , Resistencia a Antineoplásicos/genética , Ontología de Genes , Humanos , Concentración 50 Inhibidora , Ratones , Ratones Endogámicos NOD , Fosforilación , Análisis por Matrices de Proteínas , Biosíntesis de Proteínas/efectos de los fármacos , Proteína Quinasa C/antagonistas & inhibidores , Proteína Quinasa C/genética , Proteínas Quinasas/metabolismo , Proteómica , Receptor Notch1/metabolismo , Transducción de Señal/efectos de los fármacos , Espectrometría de Masas en Tándem , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Blood ; 138(15): 1317-1330, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33876224

RESUMEN

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematologic malignancy. Despite recent advances in treatments with intensified chemotherapy regimens, relapse rates and associated morbidities remain high. In this context, metabolic dependencies have emerged as a druggable opportunity for the treatment of leukemia. Here, we tested the antileukemic effects of MB1-47, a newly developed mitochondrial uncoupling compound. MB1-47 treatment in T-ALL cells robustly inhibited cell proliferation via both cytostatic and cytotoxic effects as a result of compromised mitochondrial energy and metabolite depletion, which severely impaired nucleotide biosynthesis. Mechanistically, acute treatment with MB1-47 in primary leukemias promoted adenosine monophosphate-activated serine/threonine protein kinase (AMPK) activation and downregulation of mammalian target of rapamycin (mTOR) signaling, stalling anabolic pathways that support leukemic cell survival. Indeed, MB1-47 treatment in mice harboring either murine NOTCH1-induced primary leukemias or human T-ALL patient-derived xenografts (PDXs) led to potent antileukemic effects with a significant extension in survival without overlapping toxicities. Overall, our findings demonstrate a critical role for mitochondrial oxidative phosphorylation in T-ALL and uncover MB1-47-driven mitochondrial uncoupling as a novel therapeutic strategy for the treatment of this disease.


Asunto(s)
Antineoplásicos/uso terapéutico , Mitocondrias/efectos de los fármacos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Desacopladores/uso terapéutico , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Ratones , Mitocondrias/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Desacopladores/farmacología
10.
Theranostics ; 11(4): 1594-1608, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33408769

RESUMEN

The Notch pathway is highly active in almost all patients with T-cell acute lymphoblastic leukemia (T-ALL), but the implication of Notch ligands in T-ALL remains underexplored. Methods: We used a genetic mouse model of Notch ligand delta like 4 (DLL4)-driven T-ALL and performed thymectomies and splenectomies in those animals. We also used several patient-derived T-ALL (PDTALL) models, including one with DLL4 expression on the membrane and we treated PDTALL cells in vitro and in vivo with demcizumab, a blocking antibody against human DLL4 currently being tested in clinical trials in patients with solid cancer. Results: We show that surgical removal of the spleen abrogated T-ALL development in our preclinical DLL4-driven T-ALL mouse model. Mechanistically, we found that the spleen, and not the thymus, promoted the accumulation of circulating CD4+CD8+ T cells before T-ALL onset, suggesting that DLL4-driven T-ALL derives from these cells. Then, we identified a small subset of T-ALL patients showing higher levels of DLL4 expression. Moreover, in mice xenografted with a DLL4-positive PDTALL model, treatment with demcizumab had the same therapeutic effect as global Notch pathway inhibition using the potent γ-secretase inhibitor dibenzazepine. This result demonstrates that, in this PDTALL model, Notch pathway activity depends on DLL4 signaling, thus validating our preclinical mouse model. Conclusion: DLL4 expression in human leukemic cells can be a source of Notch activity in T-ALL, and the spleen plays a major role in a genetic mouse model of DLL4-driven T-ALL.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Biomarcadores de Tumor/metabolismo , Proteínas de Unión al Calcio/metabolismo , Regulación Neoplásica de la Expresión Génica , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Receptores Notch/metabolismo , Bazo/patología , Animales , Apoptosis , Biomarcadores de Tumor/genética , Proliferación Celular , Femenino , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Leucemia-Linfoma Linfoblástico de Células T Precursoras/etiología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Receptores Notch/genética , Bazo/metabolismo , Bazo/cirugía , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Leukemia ; 35(2): 377-388, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32382081

RESUMEN

Folate metabolism enables cell growth by providing one-carbon (1C) units for nucleotide biosynthesis. The 1C units are carried by tetrahydrofolate, whose production by the enzyme dihydrofolate reductase is targeted by the important anticancer drug methotrexate. 1C units come largely from serine catabolism by the enzyme serine hydroxymethyltransferase (SHMT), whose mitochondrial isoform is strongly upregulated in cancer. Here we report the SHMT inhibitor SHIN2 and demonstrate its in vivo target engagement with 13C-serine tracing. As methotrexate is standard treatment for T-cell acute lymphoblastic leukemia (T-ALL), we explored the utility of SHIN2 in this disease. SHIN2 increases survival in NOTCH1-driven mouse primary T-ALL in vivo. Low dose methotrexate sensitizes Molt4 human T-ALL cells to SHIN2, and cells rendered methotrexate resistant in vitro show enhanced sensitivity to SHIN2. Finally, SHIN2 and methotrexate synergize in mouse primary T-ALL and in a human patient-derived xenograft in vivo, increasing survival. Thus, SHMT inhibition offers a complementary strategy in the treatment of T-ALL.


Asunto(s)
Sinergismo Farmacológico , Regulación Leucémica de la Expresión Génica , Glicina Hidroximetiltransferasa/antagonistas & inhibidores , Metotrexato/farmacología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Animales , Antimetabolitos Antineoplásicos/farmacología , Apoptosis , Proliferación Celular , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Blood Adv ; 4(18): 4417-4429, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32931582

RESUMEN

In pediatric acute myeloid leukemia (AML), intensive chemotherapy and allogeneic hematopoietic stem cell transplantation are the cornerstones of treatment in high-risk cases, with severe late effects and a still high risk of disease recurrence as the main drawbacks. The identification of targeted, more effective, safer drugs is thus desirable. We performed a high-throughput drug-screening assay of 1280 compounds and identified thioridazine (TDZ), a drug that was highly selective for the t(6;11)(q27;q23) MLL-AF6 (6;11)AML rearrangement, which mediates a dramatically poor (below 20%) survival rate. TDZ induced cell death and irreversible progress toward the loss of leukemia cell clonogenic capacity in vitro. Thus, we explored its mechanism of action and found a profound cytoskeletal remodeling of blast cells that led to Ca2+ influx, triggering apoptosis through mitochondrial depolarization, confirming that this latter phenomenon occurs selectively in t(6;11)AML, for which AF6 does not work as a cytoskeletal regulator, because it is sequestered into the nucleus by the fusion gene. We confirmed TDZ-mediated t(6;11)AML toxicity in vivo and enhanced the drug's safety by developing novel TDZ analogues that exerted the same effect on leukemia reduction, but with lowered neuroleptic effects in vivo. Overall, these results refine the MLL-AF6 AML leukemogenic mechanism and suggest that the benefits of targeting it be corroborated in further clinical trials.


Asunto(s)
Leucemia Mieloide Aguda , Proteína de la Leucemia Mieloide-Linfoide , Calcio , Muerte Celular , Niño , N-Metiltransferasa de Histona-Lisina/genética , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Proteína de la Leucemia Mieloide-Linfoide/genética , Proteínas de Fusión Oncogénica/genética , Tioridazina , Translocación Genética
13.
Cells ; 9(7)2020 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-32708470

RESUMEN

T-cell acute lymphoblastic leukemia (T-ALL) is a rare, aggressive disease arising from T-cell precursors. NOTCH1 plays an important role both in T-cell development and leukemia progression, and more than 60% of human T-ALLs harbor mutations in components of the NOTCH1 signaling pathway, leading to deregulated cell growth and contributing to cell transformation. Besides multiple NOTCH1 target genes, microRNAs have also been shown to regulate T-ALL initiation and progression. Using an established mouse model of T-ALL induced by NOTCH1 activation, we identified several microRNAs downstream of NOTCH1 activation. In particular, we found that NOTCH1 inhibition can induce miR-22-3p in NOTCH1-dependent tumors and that this regulation is also conserved in human samples. Importantly, miR-22-3p overexpression in T-ALL cells can inhibit colony formation in vitro and leukemia progression in vivo. In addition, miR-22-3p was found to be downregulated in T-ALL specimens, both T-ALL cell lines and primary samples, relative to immature T-cells. Our results suggest that miR-22-3p is a functionally relevant microRNA in T-ALL whose modulation can be exploited for therapeutic purposes to inhibit T-ALL progression.


Asunto(s)
Progresión de la Enfermedad , MicroARNs/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Animales , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Leucémica de la Expresión Génica , Humanos , Ratones , MicroARNs/genética , Receptor Notch1/antagonistas & inhibidores , Receptor Notch1/metabolismo , Regulación hacia Arriba/genética
14.
J Clin Med ; 9(2)2020 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-32013179

RESUMEN

The classical cancer stem cell (CSC) model places CSCs at the apex of a hierarchical scale, suggesting different genetic alterations in non-CSCs compared to CSCs, since an ill-defined number of cell generations and time intervals separate CSCs from the more differentiated cancer cells that form the bulk of the tumor. Another model, however, poses that CSCs should be considered a functional state of tumor cells, hence sharing the same genetic alterations. Here, we review the existing literature on the genetic landscape of CSCs in various tumor types and as a case study investigate the genomic complexity of DNA obtained from matched CSCs and non-CSCs from five ovarian cancer patients, using a genome-wide single-nucleotide polymorphism (SNP) microarray.

15.
Haematologica ; 105(5): 1317-1328, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31467126

RESUMEN

Despite substantial progress in treatment of T-cell acute lymphoblastic leukemia (T-ALL), mortality remains relatively high, mainly due to primary or acquired resistance to chemotherapy. Further improvements in survival demand better understanding of T-ALL biology and development of new therapeutic strategies. The Notch pathway has been involved in the pathogenesis of this disease and various therapeutic strategies are currently under development, including selective targeting of NOTCH receptors by inhibitory antibodies. We previously demonstrated that the NOTCH1-specific neutralizing antibody OMP52M51 prolongs survival in TALL patient-derived xenografts bearing NOTCH1/FBW7 mutations. However, acquired resistance to OMP52M51 eventually developed and we used patient-derived xenografts models to investigate this phenomenon. Multi-level molecular characterization of T-ALL cells resistant to NOTCH1 blockade and serial transplantation experiments uncovered heterogeneous types of resistance, not previously reported with other Notch inhibitors. In one model, resistance appeared after 156 days of treatment, it was stable and associated with loss of Notch inhibition, reduced mutational load and acquired NOTCH1 mutations potentially affecting the stability of the heterodimerization domain. Conversely, in another model resistance developed after only 43 days of treatment despite persistent down-regulation of Notch signaling and it was accompanied by modulation of lipid metabolism and reduced surface expression of NOTCH1. Our findings shed light on heterogeneous mechanisms adopted by the tumor to evade NOTCH1 blockade and support clinical implementation of antibody-based target therapy for Notch-addicted tumors.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Animales , Humanos , Ratones Endogámicos NOD , Ratones SCID , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Receptor Notch1/genética , Transducción de Señal , Linfocitos T , Ensayos Antitumor por Modelo de Xenoinjerto
16.
Cells ; 8(12)2019 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-31835444

RESUMEN

Anti-angiogenic therapy triggers metabolic alterations in experimental and human tumors, the best characterized being exacerbated glycolysis and lactate production. By using both Liquid Chromatography-Mass Spectrometry (LC-MS) and Nuclear Magnetic Resonance (NMR) analysis, we found that treatment of ovarian cancer xenografts with the anti-Vascular Endothelial Growth Factor (VEGF) neutralizing antibody bevacizumab caused marked alterations of the tumor lipidomic profile, including increased levels of triacylglycerols and reduced saturation of lipid chains. Moreover, transcriptome analysis uncovered up-regulation of pathways involved in lipid metabolism. These alterations were accompanied by increased accumulation of lipid droplets in tumors. This phenomenon was reproduced under hypoxic conditions in vitro, where it mainly depended from uptake of exogenous lipids and was counteracted by treatment with the Liver X Receptor (LXR)-agonist GW3965, which inhibited cancer cell viability selectively under reduced serum conditions. This multi-level analysis indicates alterations of lipid metabolism following anti-VEGF therapy in ovarian cancer xenografts and suggests that LXR-agonists might empower anti-tumor effects of bevacizumab.


Asunto(s)
Metabolismo de los Lípidos/efectos de los fármacos , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Apoptosis/efectos de los fármacos , Benzoatos/uso terapéutico , Bencilaminas/uso terapéutico , Bevacizumab/uso terapéutico , Western Blotting , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Humanos , Inmunohistoquímica , Espectroscopía de Resonancia Magnética , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Cells ; 7(10)2018 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-30304769

RESUMEN

MYC-translocated T-lineage acute lymphoblastic leukemia (T-ALL) is a rare subgroup of T-ALL associated with CDKN2A/B deletions, PTEN inactivation, and absence of NOTCH1 or FBXW7 mutations. This subtype of T-ALL has been associated with induction failure and aggressive disease. Identification of drug targets and mechanistic insights for this disease are still limited. Here, we established a human NOTCH1-independent MYC-translocated T-ALL cell line that maintains the genetic and phenotypic characteristics of the parental leukemic clone at diagnosis. The University of Padua T-cell acute lymphoblastic leukemia 13 (UP-ALL13) cell line has all the main features of the above described MYC-translocated T-ALL. Interestingly, UP-ALL13 was found to harbor a heterozygous R882H DNMT3A mutation typically found in myeloid leukemia. Chromatin immunoprecipitation coupled with high-throughput sequencing for histone H3 lysine 27 (H3K27) acetylation revealed numerous putative super-enhancers near key transcription factors, including MYC, MYB, and LEF1. Marked cytotoxicity was found following bromodomain-containing protein 4 (BRD4) inhibition with AZD5153, suggesting a strict dependency of this particular subtype of T-ALL on the activity of super-enhancers. Altogether, this cell line may be a useful model system for dissecting the signaling pathways implicated in NOTCH1-independent T-ALL and for the screening of targeted anti-leukemia agents specific for this T-ALL subgroup.

18.
Cell Death Dis ; 9(8): 822, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-30069011

RESUMEN

Approximately 20% of pediatric T-cell acute lymphoblastic leukemia (T-ALL) patients are currently incurable due to primary or secondary resistance to glucocorticoid-based therapies. Here we employed an integrated approach to selectively kill T-ALL cells by increasing mitochondrial reactive oxygen species (ROS) using NS1619, a benzimidazolone that activates the K+ (BK) channel, and dehydroepiandrosterone (DHEA), which blunts ROS scavenging through inhibition of the pentose phosphate pathway. These compounds selectively killed T-ALL cell lines, patient-derived xenografts and primary cells from patients with refractory T-ALL, but did not kill normal human thymocytes. T-ALL cells treated with NS1619 and DHEA showed activation of the ROS-responsive transcription factor NRF2, indicating engagement of antioxidant pathways, as well as increased cleavage of OPA1, a mitochondrial protein that promotes mitochondrial fusion and regulates apoptosis. Consistent with these observations, transmission electron microscopy analysis indicated that NS1619 and DHEA increased mitochondrial fission. OPA1 cleavage and cell death were inhibited by ROS scavengers and by siRNA-mediated knockdown of the mitochondrial protease OMA1, indicating the engagement of a ROS-OMA1-OPA1 axis in T-ALL cells. Furthermore, NS1619 and DHEA sensitized T-ALL cells to TRAIL-induced apoptosis. In vivo, the combination of dexamethasone and NS1619 significantly reduced the growth of a glucocorticoid-resistant patient-derived T-ALL xenograft. Taken together, our findings provide proof-of-principle for an integrated ROS-based pharmacological approach to target refractory T-ALL.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Metaloendopeptidasas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Bencimidazoles/química , Bencimidazoles/farmacología , Bencimidazoles/uso terapéutico , Deshidroepiandrosterona/farmacología , Deshidroepiandrosterona/uso terapéutico , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Oxidación-Reducción , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Especies Reactivas de Oxígeno/química , Especies Reactivas de Oxígeno/metabolismo , Linfocitos T/citología , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/farmacología , Trasplante Heterólogo
19.
Oncogene ; 37(28): 3839-3851, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29643474

RESUMEN

Several studies have revealed that endosomal sorting controls the steady-state levels of Notch at the cell surface in normal cells and prevents its inappropriate activation in the absence of ligands. However, whether this highly dynamic physiologic process can be exploited to counteract dysregulated Notch signaling in cancer cells remains unknown. T-ALL is a malignancy characterized by aberrant Notch signaling, sustained by activating mutations in Notch1 as well as overexpression of Notch3, a Notch paralog physiologically subjected to lysosome-dependent degradation in human cancer cells. Here we show that treatment with the pan-HDAC inhibitor Trichostatin A (TSA) strongly decreases Notch3 full-length protein levels in T-ALL cell lines and primary human T-ALL cells xenografted in mice without substantially reducing NOTCH3 mRNA levels. Moreover, TSA markedly reduced the levels of Notch target genes, including pTα, CR2, and DTX-1, and induced apoptosis of T-ALL cells. We further observed that Notch3 was post-translationally regulated following TSA treatment, with reduced Notch3 surface levels and increased accumulation of Notch3 protein in the lysosomal compartment. Surface Notch3 levels were rescued by inhibition of dynein with ciliobrevin D. Pharmacologic studies with HDAC1, 6, and 8-specific inhibitors disclosed that these effects were largely due to inhibition of HDAC6 in T-ALL cells. HDAC6 silencing by specific shRNA was followed by reduced Notch3 expression and increased apoptosis of T-ALL cells. Finally, HDAC6 silencing impaired leukemia outgrowth in mice, associated with reduction of Notch3 full-length protein in vivo. These results connect HDAC6 activity to regulation of total and surface Notch3 levels and suggest HDAC6 as a potential novel therapeutic target to lower Notch signaling in T-ALL and other Notch3-addicted tumors.


Asunto(s)
Histona Desacetilasa 6/metabolismo , Leucemia-Linfoma de Células T del Adulto/metabolismo , Transporte de Proteínas/fisiología , Receptor Notch3/metabolismo , Linfocitos T/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/fisiología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Proliferación Celular/efectos de los fármacos , Proliferación Celular/fisiología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Ácidos Hidroxámicos/farmacología , Células Jurkat , Leucemia-Linfoma de Células T del Adulto/tratamiento farmacológico , Leucemia-Linfoma de Células T del Adulto/patología , Lisosomas/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones SCID , Transporte de Proteínas/efectos de los fármacos , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Transducción de Señal/fisiología , Linfocitos T/patología
20.
Br J Cancer ; 118(7): 985-994, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29515258

RESUMEN

BACKGROUND: Despite chemotherapy intensification, a subgroup of high-risk paediatric T-cell acute lymphoblastic leukemia (T-ALL) patients still experience treatment failure. In this context, we hypothesised that therapy resistance in T-ALL might involve aldo-keto reductase 1C (AKR1C) enzymes as previously reported for solid tumors. METHODS: Expression of NRF2-AKR1C signaling components has been analysed in paediatric T-ALL samples endowed with different treatment outcomes as well as in patient-derived xenografts of T-ALL. The effects of AKR1C enzyme modulation has been investigated in T-ALL cell lines and primary cultures by combining AKR1C inhibition, overexpression, and gene silencing approaches. RESULTS: We show that T-ALL cells overexpress AKR1C1-3 enzymes in therapy-resistant patients. We report that AKR1C1-3 enzymes play a role in the response to vincristine (VCR) treatment, also ex vivo in patient-derived xenografts. Moreover, we demonstrate that the modulation of AKR1C1-3 levels is sufficient to sensitise T-ALL cells to VCR. Finally, we show that T-ALL chemotherapeutics induce overactivation of AKR1C enzymes independent of therapy resistance, thus establishing a potential resistance loop during T-ALL combination treatment. CONCLUSIONS: Here, we demonstrate that expression and activity of AKR1C enzymes correlate with response to chemotherapeutics in T-ALL, posing AKR1C1-3 as potential targets for combination treatments during T-ALL therapy.


Asunto(s)
Aldo-Ceto Reductasas/fisiología , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Resistencia a Antineoplásicos/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , 20-Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , 20-Hidroxiesteroide Deshidrogenasas/fisiología , Edad de Inicio , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/antagonistas & inhibidores , Miembro C3 de la Familia 1 de las Aldo-Ceto Reductasas/fisiología , Aldo-Ceto Reductasas/antagonistas & inhibidores , Animales , Niño , Resistencia a Antineoplásicos/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Humanos , Hidroxiesteroide Deshidrogenasas/antagonistas & inhibidores , Hidroxiesteroide Deshidrogenasas/fisiología , Isoenzimas/fisiología , Acetato de Medroxiprogesterona/administración & dosificación , Ratones , Ratones Endogámicos NOD , Ratones SCID , Oxidorreductasas/antagonistas & inhibidores , Oxidorreductasas/fisiología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/epidemiología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Células Tumorales Cultivadas , Vincristina/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...