Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Prosthet Orthot Int ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38625697

RESUMEN

BACKGROUND: Traditionally, the manufacture of prostheses is time-consuming and labor-intensive. One possible route to improving access and quality of these devices is the digitalizing of the fabrication process, which may reduce the burden of manual labor and bring the potential for automation that could help unblock access to assistive technologies globally. OBJECTIVES: To identify where there are gaps in the literature that are creating barriers to decision-making on either appropriate uptake by clinical teams or on the needed next steps in research that mean these technologies can continue on a pathway to maturity. STUDY DESIGN: Scoping literature review. METHODS: A comprehensive search was completed in the following databases: Allied and Complementary Medicine Database, MEDLINE, Embase, Global Health Archive, CINAHL Plus, Cochrane Library, Web of Science, Association for Computing Machinery, Institute of Electrical and Electronics Engineers, and Engineering Village, resulting in 3487 articles to be screened. RESULTS: After screening, 130 lower limb prosthetic articles and 117 upper limb prosthetic articles were included in this review. Multiple limitations in the literature were identified, particularly a lack of long-term, larger-scale studies; research into the training requirements for these technologies and the necessary rectification processes; and a high range of variance of production workflows and materials which makes drawing conclusions difficult. CONCLUSIONS: These limitations create a barrier to adequate evidence-based decision-making for clinicians, technology developers, and wider policymakers. Increased collaboration between academia, industry, and clinical teams across more of the pathway to market for new technologies could be a route to addressing these gaps.

3.
Disabil Rehabil Assist Technol ; : 1-11, 2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37466362

RESUMEN

PURPOSE: To investigate the practices of repair that exist for users of mobility assistive products in low resource settings, as well as the psychosocial impact that the repair, or non-repair, of these devices has on users' lives. MATERIALS AND METHODS: This article collates data on repair practices and the responses from participants on the topic of repair from studies conducted by the authors across four different low resource settings in Kenya, Uganda, Sierra Leone, and Indonesia. This data was then analyzed to identify the common themes found across geographies. RESULTS: Three major models of repair practice emerged from the data: "Individual or Informal Repair in the Community"; "Local Initiatives"; and "Specialist AT Workshop Repair". Additionally, the wider impact on the participants' lives of "Problems & Concerns with Repair"; "Experiences of Breakages & Frequencies of Repair" and the "Impact of Broken Devices" are explored. CONCLUSIONS: The results of this analysis demonstrate the paramount importance of community-based repair of devices, and how despite this importance, repair is often overlooked in the planning and design of assistive products and services. There is a need to further incorporate and support these informal contributions as part of the formal provision systems of assistive device.IMPLICATIONS FOR REHABILITATIONA lack of available specialist repair services in low resource settings hinders the potential impact of assistive technology provision systems.Community-based repair is the major route by which assistive devices are repaired in low resource settings.Appropriate community-based repair strategies should be incorporated into and supported by the formal assistive technology provision models in order to optimise outcomes.A lack of data on outcomes across the lifecycle of assistive products hinders progress on improving focus on follow-up services - in particular repair & maintenance.By supporting community-based repair, repairs that are inappropriate for that approach could be better directed to specialist repair services.

4.
R Soc Open Sci ; 10(5): 230089, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37181792

RESUMEN

Pro-oxidant additive containing (PAC) plastics is a term that describes a growing number of plastics which are designed to degrade in the unmanaged natural environment (open-air, soil, aquatic) through oxidation and other processes. It is a category that includes 'oxo-degradable' plastics, 'oxo-biodegradable' plastics and those containing 'biotransformation' additives. There is evidence that a new standard PAS 9017 : 2020 is relevant to predicting the timescale for abiotic degradation of PAC plastic in hot dry climates under ideal conditions (data reviewed for South of France and Florida). There are no reliable data to date to show that the PAS 9017 : 2020 predicts the timescale for abiotic degradation of PAC plastics in cool or wet climatic regions such as the UK or under less ideal conditions (soil burial, surface soiling etc.). Most PAC plastics studied in the literature showed biodegradability values in the range 5-60% and would not pass the criteria for biodegradability set in the new PAS 9017 : 2020. Possible formation of microplastics and cross-linking have been highlighted both by field studies and laboratory studies. Systematic eco-toxicity studies are needed to assess the possible effect of PAC additives and microplastics on the environment and biological organisms.

5.
SICOT J ; 8: 43, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36367405

RESUMEN

BACKGROUND: Early failure of uncemented femoral stems associated with incorrect sizing is a known postoperative complication. Surgeons are often faced with the question of whether an uncemented stem of adequate stability or a larger-sized stem should be implanted, especially when the proximal femoral cancellous bone is adequate. The biomechanical effect of sub-optimal stem sizing in the femur remains unclear. This study investigated the mechanical behaviour of two sequential sized uncemented stems of the same type. METHODS: Six laboratory models of synthetic non-osteoporotic femora were randomly divided into two groups and implanted with either a nominal or oversized uncemented hydroxyapatite-coated nonporous titanium collarless stem. Stiffness, uniaxial strain, and pattern of strain distribution were measured under an anatomical one-legged stance. RESULTS: Oversized stems demonstrated a higher overall stiffness compared to nominal; however, this was not statistically significant. The nominal stem showed a higher strain in the neck and the proximal medial diaphyseal region. The oversized stem showed higher strains in the distal region around the implant tip. CONCLUSION: Opting to use a larger stem may potentially increase primary stability, thus allowing safer early mobility. However, higher stiffness may lead to stress shielding, bone loss, and thigh pain in the long term. In addition, strains in the diaphysis and the tip of the stem may predispose to periprosthetic fractures, especially in osteoporotic bones, making this a relatable aspect for users and biomechanical loading. Given the wide range of complex factors that need to be considered when choosing stem size in uncemented THA surgery, this study's results should be interpreted cautiously.

6.
IEEE Int Conf Rehabil Robot ; 2022: 1-6, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36176147

RESUMEN

Prosthetic limbs (and orthotic devices) have been used as a paradigm for the treatment and rehabilitation of neuropathic pain, such as phantom limb pain. Long-term adoption of the devices for the continued use in rehabilitation remains low in part due to reduced embodiment and the high cognitive load associated with controlling the device. Previous research has shown that incorporating sensory feedback in prostheses can provide proprioceptive information, increase control and manipulation of objects, and improve embodiment. However, feedback experienced by the user varies daily and requires constant parameter adjustments to maintain accurate and intuitive sensory perception, further preventing long term adoption. Work therefore needs to be explored that correlate feedback modalities to perception of tactile information, such as texture and pressure. The work presented in this paper begins to explore this by utilizing a deep-learning algorithm to classify the dissipation of vibration artefacts found in the EMG signals of able-bodied individuals to specific texture patterns. Four texture patterns were applied to 7 participants using two vibration motors and repeated 3 times. In post processing, a RNN network identified the artefact features along equidistantly spaced EMG electrodes and correctly classified unseen data from each participant.


Asunto(s)
Miembros Artificiales , Neuralgia , Mano , Humanos , Percepción , Vibración/uso terapéutico
7.
Artículo en Inglés | MEDLINE | ID: mdl-35270421

RESUMEN

We aim to identify influences on UK citizens' household food waste recycling as a basis for designing strategies to increase household food waste collection rates via local services. Using a UK dataset (n = 1801) and the COM-B (Capability-Opportunity-Motivation-Behaviour) model as a theoretical framework, we conduct quantitative regression and supporting thematic analyses to investigate influences on citizens' recycling of food waste. Results show that automatic motivation (e.g., emotions and habit) and psychological capability (e.g., knowledge) predict household food waste recycling. Physical opportunity (i.e., dealing with food waste in other ways such as home-composting or feeding pets/strays, time and financial costs) was the main barrier to recycling food waste identified in thematic analyses. Participants also reported automatic motivation-related barriers such as concerns over pests, odour, hygiene and local authorities' food waste collection capabilities. Based on findings we recommend the development of clear, consistent communications aimed at creating positive social norms relating to recycling and increasing knowledge of what can and cannot be put in food waste bins. Improved functional design and free distribution of bins and compostable caddy liners developed according to user-centred needs for cleanliness, convenience and hygiene are also needed. These will not be sufficient without a nationally uniform, efficient and reliable system of household food waste collection.


Asunto(s)
Eliminación de Residuos , Administración de Residuos , Alimentos , Humanos , Motivación , Reciclaje/métodos , Reino Unido , Administración de Residuos/métodos
8.
SICOT J ; 8: 1, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34989673

RESUMEN

INTRODUCTION: Our understanding of the impact of the stem fixation method in total hip arthroplasty (THA) on the subsequent management of periprosthetic femoral fractures (PFF) is still limited. This study aimed to investigate and quantify the effect of the stem fixation method, i.e., cemented vs. uncemented THA, on the management of Vancouver Type B1 periprosthetic femoral fractures with the same plate. METHODS: Eight laboratory models of synthetic femora were divided into two groups and implanted with either a cemented or uncemented hip prosthesis. The overall stiffness and strain distribution were measured under an anatomical one-legged stance. All eight specimens underwent an osteotomy to simulate Vancouver type B1 PFF's. Fractures were then fixed using the same extramedullary plate and screws. The same measurements and fracture movement were taken under the same loading conditions. RESULTS: Highlighted that the uncemented THA and PFF fixation constructs had a lower overall stiffness. Subsequently, the mechanical strain on the fracture plate for the uncemented construct was higher compared to the cemented constructs. CONCLUSION: PFF fixation of a Vancouver type B1 fracture using a plate may have a higher risk of failure in uncemented THAs.

9.
Sci Total Environ ; 791: 148239, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34126473

RESUMEN

Restoration of forested land represents an effective strategy to achieve net-zero target emissions by enhancing the removal of greenhouse gases from the atmosphere. The most common afforestation strategy envisages planting seedlings, which are germinated and grown to the desired age at tree nurseries, with plastic shelters to increase growth and survival of trees. This article presents a comprehensive Life Cycle Assessment (LCA) study that compares the environmental performance of current and prospective scenarios for shelter-aided seedling planting compared with a base case where shelters are not employed. The study focuses on the UK, but results and conclusions are valid for other temperate oceanic regions. The scenarios investigated are a combination of different shelters materials and end-of-life (EoL) strategies. Our analysis demonstrates that (i) planting seedling without shelters is the most preferable option across most environmental impact categories (including Climate Change), and in terms of weighted results, (ii) polypropylene shelters are preferable to bio-based alternatives, including polylactic acid-starch blends and bio-polypropylene, (iii) recycling is the most environmentally advantageous EoL treatment. Our study also showed that that the carbon emissions of the scenarios investigated are negligible when compared to the amount of carbon sequestered by a tree in 25 years.


Asunto(s)
Plantones , Árboles , Bosques , Plásticos , Estudios Prospectivos , Reino Unido
10.
UCL Open Environ ; 3: e025, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37228796

RESUMEN

An estimated 2.5-5 billion single-use coffee cups are disposed of annually in the UK, most of which consist of paper with a plastic lining. Due to the difficulty of recycling poly-coated material, most of these cups end up incinerated or put in landfills. As drinking (take-away) hot beverages is a behaviour, behaviour change interventions are necessary to reduce the environmental impacts of single-use coffee cup waste. Basing the design of interventions on a theoretical understanding of behaviour increases the transparency of the development process, the likelihood that the desired changes in behaviour will occur and the potential to synthesise findings across studies. The present paper presents a methodology for identifying influences on using single-use and reusable cups as a basis for designing intervention strategies. Two behaviour change frameworks: The Theoretical Domains Framework (TDF) and the Capability-Opportunity-Motivation-Behaviour (COMB) model of behaviour, were used to develop an online survey and follow-up interviews. Research findings can inform the selection of intervention strategies using a third framework, the Behaviour Change Wheel (BCW). The application of the methodology is illustrated in relation to understanding barriers and enablers to single-use and reusable cup use across the setting of a London university campus. We have developed a detailed method for identifying behavioural influences relevant to pro-environmental behaviours, together with practical guidance for each step and a worked example. Benefits of this work include it providing guidance on developing study materials and collecting and analysing data. We offer this methodology to the intervention development and implementation community to assist in the application of behaviour change theory to interventions.

11.
UCL Open Environ ; 3: e022, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-37228803

RESUMEN

During the coronavirus (COVID-19) pandemic, the UK government mandated the use of face masks in various public settings and recommended the use of reusable masks to combat shortages of medically graded single-use masks in healthcare. To assist decision-making on the choice of masks for future pandemics, where shortages may not be a contributing factor, the University College London (UCL) Plastic Waste Innovation Hub has carried out a multidisciplinary comparison between single-use and reusable masks based on their anatomy, standalone effectiveness, behavioural considerations, environmental impact and costs. Although current single-use masks have a higher standalone effectiveness against bacteria and viruses, studies show that reusable masks have adequate performance in slowing infection rates of respiratory viruses. Material flow analysis (MFA), life cycle assessment (LCA) and cost comparison show that reusable masks have a lower environmental and economic impact than single-use masks. If every person in the UK uses one single-use mask each day for a year, it will create a total of 124,000 tonnes of waste, 66,000 tonnes of which would be unrecyclable contaminated plastic waste (the masks), with the rest being the recyclable packaging typically used for transportation and distribution of masks. Using reusable masks creates >85% less waste, generates 3.5 times lower impact on climate change and incurs 3.7 times lower costs. Further behavioural research is necessary to understand the extent and current practices of mask use; and how these practices affect mask effectiveness in reducing infection rates. Wearing single-use masks may be preferred over reusable masks due to perceptions of increased hygiene and convenience. Understanding behaviour towards the regular machine-washing of reusable masks for their effective reuse is key to maximise their public health benefits and minimise environmental and economic costs.

12.
Nat Cell Biol ; 21(11): 1370-1381, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31685997

RESUMEN

Cell migration is hypothesized to involve a cycle of behaviours beginning with leading edge extension. However, recent evidence suggests that the leading edge may be dispensable for migration, raising the question of what actually controls cell directionality. Here, we exploit the embryonic migration of Drosophila macrophages to bridge the different temporal scales of the behaviours controlling motility. This approach reveals that edge fluctuations during random motility are not persistent and are weakly correlated with motion. In contrast, flow of the actin network behind the leading edge is highly persistent. Quantification of actin flow structure during migration reveals a stable organization and asymmetry in the cell-wide flowfield that strongly correlates with cell directionality. This organization is regulated by a gradient of actin network compression and destruction, which is controlled by myosin contraction and cofilin-mediated disassembly. It is this stable actin-flow polarity, which integrates rapid fluctuations of the leading edge, that controls inherent cellular persistence.


Asunto(s)
Actinas/genética , Movimiento Celular/genética , Drosophila melanogaster/embriología , Mecanotransducción Celular , Pez Cebra/embriología , Actinas/metabolismo , Animales , Polaridad Celular , Rastreo Celular , Cofilina 1/genética , Cofilina 1/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Embrión no Mamífero , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hemocitos/citología , Hemocitos/metabolismo , Queratinocitos/citología , Queratinocitos/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Miosinas/genética , Miosinas/metabolismo , Cultivo Primario de Células , Pez Cebra/genética , Pez Cebra/metabolismo , Proteína Fluorescente Roja
13.
Front Robot AI ; 6: 27, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-33501043

RESUMEN

There is a growing need for flexible stretch sensors to monitor real time stress and strain in wearable technology. However, developing stretch sensors with linear responses is difficult due to viscoelastic and strain rate dependent effects. Instead of trying to engineer the perfect linear sensor we take a deep learning approach which can cope with non-linearity and yet still deliver reliable results. We present a general method for calibrating highly hysteretic resistive stretch sensors. We show results for textile and elastomeric stretch sensors however we believe the method is directly applicable to any physical choice of sensor material and fabrication, and easily adaptable to other sensing methods, such as those based on capacitance. Our algorithm does not require any a priori knowledge of the physical attributes or geometry of the sensor to be calibrated, which is a key advantage as stretchable sensors are generally applicable to highly complex geometries with integrated electronics requiring bespoke manufacture. The method involves three-stages. The first stage requires a calibration step in which the strain of the sensor material is measured using a webcam while the electrical response is measured via a set of arduino-based electronics. During this data collection stage, the strain is applied manually by pulling the sensor over a range of strains and strain rates corresponding to the realistic in-use strain and strain rates. The correlated data between electrical resistance and measured strain and strain rate are stored. In the second stage the data is passed to a Long Short Term Memory Neural Network (LSTM) which is trained using part of the data set. The ability of the LSTM to predict the strain state given a stream of unseen electrical resistance data is then assessed and the maximum errors established. In the third stage the sensor is removed from the webcam calibration set-up and embedded in the wearable application where the live stream of electrical resistance is the only measure of strain-this corresponds to the proposed use case. Highly accurate stretch topology mapping is achieved for the three commercially available flexible sensor materials tested.

14.
Nat Phys ; 15(8): 839-847, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33569083

RESUMEN

Epithelial monolayers are one-cell thick tissue sheets that line most of the body surfaces, separating internal and external environments. As part of their function, they must withstand extrinsic mechanical stresses applied at high strain rates. However, little is known about how monolayers respond to mechanical deformations. Here, by subjecting suspended epithelial monolayers to stretch, we find that they dissipate stresses on a minute timescale and that relaxation can be described by a power law with an exponential cut-off at timescales larger than ~10 s. This process involves an increase in monolayer length, pointing to active remodelling of cellular biopolymers at the molecular scale during relaxation. Strikingly, monolayers consisting of tens of thousands of cells relax stress with similar dynamics to single rounded cells and both respond similarly to perturbations of the actomyosin cytoskeleton. By contrast, cell-cell junctional complexes and intermediate filaments do not relax tissue stress, but form stable connections between cells, allowing monolayers to behave rheologically as single cells. Taken together our data show that actomyosin dynamics governs the rheological properties of epithelial monolayers, dissipating applied stresses, and enabling changes in monolayer length.

15.
Clin Biomech (Bristol, Avon) ; 61: 144-162, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30579137

RESUMEN

BACKGROUND: Periprosthetic femoral fracture is a severe complication of total hip arthroplasty. A previous review published in 2011 summarised the biomechanical studies regarding periprosthetic femoral fracture and its fixation techniques. Since then, there have been several commercially available fracture plates designed specifically for the treatment of these fractures. However, several clinical studies still report failure of fixation treatments used for these fractures. METHODS: The current literature on biomechanical models of periprosthetic femoral fracture fixation since 2010 to present is reviewed. The methodologies involved in the experimental and computational studies of periprosthetic femoral fracture fixation are described and compared with particular focus on the recent developments. FINDINGS: Several issues raised in the previous review paper have been addressed by current studies; such as validating computational results with experimental data. Current experimental studies are more sophisticated in design. Computational studies have been useful in studying fixation methods or conditions (such as bone healing) that are difficult to study in vivo or in vitro. However, a few issues still remain and are highlighted. INTERPRETATION: The increased use of computational studies in investigating periprosthetic femoral fracture fixation techniques has proven valuable. Existing protocols for testing periprosthetic femoral fracture fixation need to be standardised in order to make more direct and conclusive comparisons between studies. A consensus on the 'optimum' treatment method for periprosthetic femoral fracture fixation needs to be achieved.


Asunto(s)
Artroplastia de Reemplazo de Cadera/efectos adversos , Fracturas del Fémur/cirugía , Fémur/cirugía , Fracturas de Cadera/cirugía , Fracturas Periprotésicas/cirugía , Fenómenos Biomecánicos , Placas Óseas , Simulación por Computador , Fracturas del Fémur/complicaciones , Fijación Interna de Fracturas , Fracturas de Cadera/complicaciones , Humanos , Estándares de Referencia
16.
ACS Omega ; 3(4): 4342-4351, 2018 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-29732454

RESUMEN

We present the synthesis of nylon-12 scaffolds by 3D printing and demonstrate their versatility as matrices for cell growth, differentiation, and biomineral formation. We demonstrate that the porous nature of the printed parts makes them ideal for the direct incorporation of preformed nanomaterials or material precursors, leading to nanocomposites with very different properties and environments for cell growth. Additives such as those derived from sources such as tetraethyl orthosilicate applied at a low temperature promote successful cell growth, due partly to the high surface area of the porous matrix. The incorporation of presynthesized iron oxide nanoparticles led to a material that showed rapid heating in response to an applied ac magnetic field, an excellent property for use in gene expression and, with further improvement, chemical-free sterilization. These methods also avoid changing polymer feedstocks and contaminating or even damaging commonly used selective laser sintering printers. The chemically treated 3D printed matrices presented herein have great potential for use in addressing current issues surrounding bone grafting, implants, and skeletal repair, and a wide variety of possible incorporated material combinations could impact many other areas.

17.
Prosthet Orthot Int ; 42(3): 275-279, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28905679

RESUMEN

BACKGROUND AND AIM: Thermal discomfort often affects prosthesis wearers and could be addressed by increasing liner thermal conductivity. This note explores a liner made from thermally conductive silicone and two additional alternative liner designs. TECHNIQUE: Thermally conductive silicone was used to create a conductive liner and a hybrid liner. Additionally, one with open elements was made. These were compared with a plain silicone liner and a no liner scenario. Scaled down liner prototypes were used due to the high-cost of the thermally conductive silicone. Temperature decay profiles were collected by attaching thermistors to a heated liner phantom and used to evaluate scenarios. DISCUSSION: No scenario performed much better than the plain silicone liner. Implementation of passive solutions may be easier, but alternative liner materials are unlikely to affect dissipation enough to address thermal discomfort. Based on this work, future research efforts may be better spent developing active thermal discomfort solutions. Clinical relevance Thermal discomfort can increase the probability of skin damage, reduce prosthesis satisfaction and, ultimately, the quality of life. The prosthesis-wearing experience could be improved if thermal discomfort can be addressed by technological improvements.


Asunto(s)
Miembros Artificiales , Regulación de la Temperatura Corporal/fisiología , Diseño de Prótesis , Siliconas , Temperatura Cutánea/fisiología , Amputados/rehabilitación , Calor , Humanos , Pierna/cirugía , Ensayo de Materiales , Ajuste de Prótesis , Calidad de Vida
18.
Cell ; 161(2): 361-73, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25799385

RESUMEN

Contact inhibition of locomotion (CIL) is a multifaceted process that causes many cell types to repel each other upon collision. During development, this seemingly uncoordinated reaction is a critical driver of cellular dispersion within embryonic tissues. Here, we show that Drosophila hemocytes require a precisely orchestrated CIL response for their developmental dispersal. Hemocyte collision and subsequent repulsion involves a stereotyped sequence of kinematic stages that are modulated by global changes in cytoskeletal dynamics. Tracking actin retrograde flow within hemocytes in vivo reveals synchronous reorganization of colliding actin networks through engagement of an inter-cellular adhesion. This inter-cellular actin-clutch leads to a subsequent build-up in lamellar tension, triggering the development of a transient stress fiber, which orchestrates cellular repulsion. Our findings reveal that the physical coupling of the flowing actin networks during CIL acts as a mechanotransducer, allowing cells to haptically sense each other and coordinate their behaviors.


Asunto(s)
Drosophila melanogaster/citología , Hemocitos/citología , Actinas/metabolismo , Animales , Adhesión Celular , Inhibición de Contacto , Citoesqueleto/metabolismo , Miosinas/metabolismo
19.
PLoS One ; 9(11): e112166, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25405473

RESUMEN

In this work we bring together replicating rapid prototyping technology with electrohydrodynamic phenomena to develop a device with the ability to build structures in three-dimensions while simultaneously affording the user a degree of designing versatility and ease that is not seen in conventional computer numerically controlled machines. An attempt at reproducing an actual human ear using polycaprolactone was pursued to validate the hardware. Five different polycaprolactone solution concentrations between 7-15 wt% were used and printing was performed at applied voltages that ranged from 1 to 6 kV and at flow rates from 5 µl/min to 60 µl/min. The corresponding geometrical and aesthetic features of the printed constructs were studied to determine the effectiveness of the device. The 15 wt% concentration at 60 µl/min under an applied electric field of 6 kV was identified as the best operating parameters to work with.


Asunto(s)
Impresión Tridimensional , Robótica/instrumentación , Ingeniería de Tejidos/métodos , Órganos Artificiales , Oído/anatomía & histología , Hidrodinámica , Poliésteres/química , Robótica/métodos , Ingeniería de Tejidos/instrumentación
20.
PLoS One ; 9(8): e105035, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25136793

RESUMEN

This paper presents the results of a multimodal study of oral perception conducted with a set of material samples made from metals, polymers and woods, in which both the somatosensory and taste factors were examined. A multidimensional scaling analysis coupled with subjective attribute ratings was performed to assess these factors both qualitatively and quantitatively. The perceptual somatosensory factors of warmth, hardness and roughness dominated over the basic taste factors, and roughness was observed to be a less significant sensation compared to touch-only experiments. The perceptual somatosensory ratings were compared directly with physical property data in order to assess the correlation between the perceived properties and measured physical properties. In each case, a strong correlation was observed, suggesting that physical properties may be useful in industrial design for predicting oral perception.


Asunto(s)
Boca/fisiología , Percepción del Tacto , Tacto , Adolescente , Adulto , Anciano , Cobre/química , Femenino , Vidrio/química , Humanos , Masculino , Persona de Mediana Edad , Poliestirenos/química , Siliconas/química , Acero Inoxidable/química , Propiedades de Superficie , Gusto , Madera/química , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...