Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(11): e61, 2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37014016

RESUMEN

Deep parallel sequencing (NGS) is a viable tool for monitoring scFv and Fab library dynamics in many antibody engineering high-throughput screening efforts. Although very useful, the commonly used Illumina NGS platform cannot handle the entire sequence of scFv or Fab in a single read, usually focusing on specific CDRs or resorting to sequencing VH and VL variable domains separately, thus limiting its utility in comprehensive monitoring of selection dynamics. Here we present a simple and robust method for deep sequencing repertoires of full length scFv, Fab and Fv antibody sequences. This process utilizes standard molecular procedures and unique molecular identifiers (UMI) to pair separately sequenced VH and VL. We show that UMI assisted VH-VL matching allows for a comprehensive and highly accurate mapping of full length Fv clonal dynamics in large highly homologous antibody libraries, as well as identification of rare variants. In addition to its utility in synthetic antibody discovery processes, our method can be instrumental in generating large datasets for machine learning (ML) applications, which in the field of antibody engineering has been hampered by conspicuous paucity of large scale full length Fv data.


Asunto(s)
Biblioteca de Genes , Anticuerpos de Cadena Única , Cadenas Pesadas de Inmunoglobulina/genética , Anticuerpos de Cadena Única/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Aprendizaje Automático
2.
Cell Rep ; 32(4): 107956, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32726621

RESUMEN

Some Listeria monocytogenes (Lm) strains harbor a prophage within the comK gene, which renders it inactive. During Lm infection of macrophage cells, the prophage turns into a molecular switch, promoting comK gene expression and therefore Lm intracellular growth. During this process, the prophage does not produce infective phages or cause bacterial lysis, suggesting it has acquired an adaptive behavior suited to the pathogenic lifestyle of its host. In this study, we demonstrate that this non-classical phage behavior, named active lysogeny, relies on a transcriptional response that is specific to the intracellular niche. While the prophage undergoes lytic induction, the process is arrested midway, preventing the transcription of the late genes. Further, we demonstrate key phage factors, such as LlgA transcription regulator and a DNA replicase, that support the phage adaptive behavior. This study provides molecular insights into the adaptation of phages to their pathogenic hosts, uncovering unusual cooperative interactions.


Asunto(s)
Proteínas Bacterianas/genética , Listeria monocytogenes/metabolismo , Lisogenia/fisiología , Factores de Transcripción/genética , Animales , Proteínas Bacterianas/metabolismo , Bacteriófagos/genética , Femenino , Listeriosis/metabolismo , Ratones , Ratones Endogámicos C57BL , Profagos/genética , Factores de Transcripción/metabolismo , Activación Viral/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA