Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Planta ; 260(4): 80, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39192071

RESUMEN

MAIN CONCLUSION: Mutation at A126 in lycopene-ß-cyclase of Crocus (CstLcyB2a) sterically hinders its binding of δ-carotene without affecting lycopene binding, thereby diverting metabolic flux towards ß-carotene and apocarotenoid biosynthesis. Crocus sativus, commonly known as saffron, has emerged as an important crop for research because of its ability to synthesize unique apocarotenoids such as crocin, picrocrocin and safranal. Metabolic engineering of the carotenoid pathway can prove a beneficial strategy for enhancing the quality of saffron and making it resilient to changing climatic conditions. Here, we demonstrate that introducing a novel mutation at A126 in stigma-specific lycopene-ß-cyclase of Crocus (CstLcyB2a) sterically hinders its binding of δ-carotene, but does not affect lycopene binding, thereby diverting metabolic flux towards ß-carotene formation. Thus, A126L-CstLcyB2a expression in lycopene-accumulating bacterial strains resulted in enhanced production of ß-carotene. Transient expression of A126L-CstLcyB2a in C. sativus stigmas enhanced biosynthesis of crocin. Its stable expression in Nicotiana tabacum enhanced ß-branch carotenoids and phyto-hormones such as abscisic acid (ABA) and gibberellic acids (GA's). N. tabacum transgenic lines showed better growth performance and photosynthetic parameters including maximum quantum efficiency (Fv/Fm) and light-saturated capacity of linear electron transport. Exogenous application of hormones and their inhibitors demonstrated that a higher ratio of GA4/ABA has positive effects on biomass of wild-type and transgenic plants. Thus, these findings provide a platform for the development of new-generation crops with improved productivity, quality and stress tolerance.


Asunto(s)
Biomasa , Carotenoides , Crocus , Mutación , Estrés Fisiológico , Crocus/genética , Crocus/fisiología , Crocus/enzimología , Carotenoides/metabolismo , Estrés Fisiológico/genética , cis-trans-Isomerasas/genética , cis-trans-Isomerasas/metabolismo , Plantas Modificadas Genéticamente , beta Caroteno/metabolismo , Ácido Abscísico/metabolismo , Giberelinas/metabolismo , Ciclohexenos/metabolismo , Terpenos/metabolismo , Licopeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Monoterpenos Ciclohexánicos , Liasas Intramoleculares/genética , Liasas Intramoleculares/metabolismo , Nicotiana/genética , Nicotiana/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas , Glucósidos
2.
Plant Cell Rep ; 43(1): 20, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38150028

RESUMEN

KEY MESSAGE: CstMYB1R1 acts as a positive regulator of Crocus anthocyanin biosynthesis and abiotic stress tolerance which was experimentally demonstrated through molecular analysis and over-expression studies in Crocus and Nicotiana. Regulatory mechanics of flavonoid/anthocyanin biosynthesis in Crocus floral tissues along the diurnal clock has not been studied to date. MYB proteins represent the most dominant, functionally diverse and versatile type of plant transcription factors which regulate key metabolic and physiological processes in planta. Transcriptome analysis revealed that MYB family is the most dominant transcription factor family in C. sativus. Considering this, a MYB-related REVEILLE-8 type transcription factor, CstMYB1R1, was explored for its possible role in regulating Crocus flavonoid and anthocyanin biosynthetic pathway. CstMYB1R1 was highly expressed in Crocus floral tissues, particularly tepals and its expression was shown to peak at dawn and dusk time points. Anthocyanin accumulation also peaked at dawn and dusk and was minimum at night. Moreover, the diurnal expression pattern of CstMYB1R1 was shown to highly correlate with Crocus ANS/LDOX gene expression among the late anthocyanin pathway genes. CstMYB1R1 was shown to be nuclear localized and transcriptionally active. CstMYB1R1 over-expression in Crocus tepals enhanced anthocyanin levels and upregulated transcripts of Crocus flavonoid and anthocyanin biosynthetic pathway genes. Yeast one hybrid (Y1H) and GUS reporter assay confirmed that CstMYB1R1 interacts with the promoter of Crocus LDOX gene to directly regulate its transcription. In addition, the expression of CstMYB1R1 in Nicotiana plants significantly enhanced flavonoid and anthocyanin levels and improved their abiotic stress tolerance. The present study, thus, confirmed positive role of CstMYB1R1 in regulating Crocus anthocyanin biosynthetic pathway in a diurnal clock-specific fashion together with its involvement in the regulation of abiotic stress response.


Asunto(s)
Crocus , Crocus/genética , Antocianinas , Regulación de la Expresión Génica , Flavonoides , Nicotiana/genética , Estrés Fisiológico/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA