Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phytomedicine ; 132: 155588, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38908194

RESUMEN

BACKGROUND: Illness resulting from influenza is a global health problem that has significant adverse socioeconomic impact. Although various strategies such as flu vaccination have beneficial effects, the risk of this illness has not been eliminated. The use of botanicals may provide a complementary approach by enhancement of the host antiviral immune response. PURPOSE: Generate preclinical data using rodent models to determine the most effective utility of a Limnospira (formerly Arthrospira)-derived oral supplement (Immulina®) for enhancing host immunity to improve antiviral resilience. STUDY DESIGN: Two non-lethal mouse models (prophylactic and therapeutic) were used to evaluate the impact of Immulina® on increasing host resilience against experimental influenza infection. METHODS: Mice were fed Immulina® only for the 2 weeks prior to viral infection (prophylactic regime) or starting 3 days post-viral infection (at the onset of symptoms, therapeutic design). Three doses of Immulina® were evaluated in each model using both female and male mice. RESULTS: Significant protective effect of Immulina® against viral illness was observed in the prophylactic model (improved clinical scores, less body weight loss, decreased lung/body weight ratio, lower lung viral load, and increased lung IFN-γ and IL-6). Substantially less (minimal) protective effect was observed in the therapeutic model. CONCLUSION: This study demonstrates that Immulina® exerts a protective effect against influenza illness when administered using a prophylactic regime and may not be effective if given after the onset of symptoms. The results will help to optimally design future clinical trials.

2.
Phytomedicine ; 132: 155778, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38876006

RESUMEN

BACKGROUND: Immulina®, a dietary supplement derived from Limnospira (formerly Arthrospira), is being investigated as a potential agent to increase antiviral resilience. In our recently published manuscript, we described the effects of Immulina® on influenza when taken daily, beginning before infection (prophylaxis) or after the onset of clinical symptoms of viral illness (therapeutic). However, the benefit of Immulina® in infected individuals before the manifestation of any symptoms (prodromal) has not been investigated yet. PURPOSE: To evaluate Immulina®'s potential use to increase the host antiviral immune response using a prodromal therapy regime. STUDY DESIGN: The efficacy of Immulina® extract was evaluated in rodents using a prodromal protocol (test material administered prior to the emergence of viral illness symptoms). METHODS: Immulina® (25, 50 and 100 mg/kg body weight) was orally administered to both genders of mice, 2 h following influenza A viral infection, and continued daily for 14 days. RESULTS: Compared to the infected control mice, animals fed Immulina® exhibited statistically significant reduction in the emergence of various physical symptoms of viral-induced illness and decreased viral RNA levels. The effects are likely mediated through the host immune system since the level of various cytokines (IL-6 and IFN-γ) were significantly increased in lung tissue. CONCLUSION: This study, together with our previous paper, indicate that Immulina® was most effective at enhancing immune antiviral resilience if administered before or soon after initial infection. The data generated can be used to guide additional research using human subjects.

3.
Int J Exp Pathol ; 104(6): 283-291, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37750190

RESUMEN

Histomorphometric lung density measurements were used to evaluate the effects of Immulina on mouse pneumonia. Mice were intra-nasally exposed to H1N1 influenza virus at a dose of 5 × 104 PFU/50 µL/mouse. Lung density was measured using the NIH ImageJ software program. Density values were compared to semiquantitative pneumonia severity scores. Lung photomicrographs were evaluated at 25-×, 40-× and 400-× magnification. The study included viral inoculated controls (IC) and non-inoculated controls (NC) and mice either treated or not treated with Immulina. Three doses of Immulina were included (25, 50 or 100 mg/kg) and administered using 3 protocols: prophylactic treatment (P), prodromal treatment (PD) and therapeutic treatment (TH) (note that in most of the evaluations of the data for the three treatment protocols were combined). Groups of mice were evaluated on days 3, 5, 7, 10 and 15 following exposure. The occurrence of "digital pneumonia" (DP) was defined as a density measurement above the 95% confidence limit of the corresponding NC values. A significant reduction in the occurrence of DP with Immulina treatment at the higher doses compared to IC was seen as early as day 3 and persisted up to day 15. There were also statistically significant dose-variable reductions in lung density in response to Immulina. The study suggests early administration of Immulina (P or PD protocols) may enhance resistance against influenza-induced viral pneumonia. A moderate correlation between pneumonia severity scores and lung density was observed for the 25-× and 40-× images (R = 0.56 and 0.53 respectively), and a strong correlation (R = 0.68) for 400-× images.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Neumonía , Animales , Ratones , Humanos , Neumonía/tratamiento farmacológico , Pulmón
4.
Chem Res Toxicol ; 36(6): 818-821, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37255213

RESUMEN

The French Lentil & Leek Crumbles frozen food product was recently recalled due to reports of gastrointestinal issues. So far, 393 adverse illness complaints and 133 hospitalizations have been reported from consumption of this food, and the tara (Tara spinosa) protein flour ingredient is hypothesized to be responsible. A multipronged approach resulted in identification of (S)-(-)-baikiain in tara as a compound of interest due to its abundance, possible metabolic fate, and close resemblance to irreversible inhibitors of L-pipecolate oxidase. Oral administration of baikiain in ND4 mice showed a statistically significant increase in blood ALT levels and a reduction in liver GSH.


Asunto(s)
Lens (Planta) , Animales , Ratones , Harina , Cebollas , Alimentos Congelados , Hígado
5.
J Med Food ; 26(5): 307-318, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37186895

RESUMEN

The berries of Juniperus communis have been traditionally used for therapeutic purposes. They have been reported to possess various pharmacological effects such as anti-inflammatory, hypoglycemic and hypolipidemic activities. In this study, a methanolic extract of J. communis berries (JB) was evaluated for its effects on peroxisome proliferator-activated receptors alpha and gamma (PPARα and PPARγ), liver X receptor (LXR), glucose uptake and lipid accumulation using various cellular systems. At a concentration of 25 µg/mL, JB caused 3.77-fold activation of PPARα, 10.90-fold activation of PPARγ, and 4.43-fold activation of LXR in hepatic cells. JB inhibited (11%) the adipogenic effect induced by rosiglitazone in adipocytes and increased glucose uptake (90%) in muscle cells. In high-fat diet (HFD) fed mice, JB at a dose of 25 mg/kg body weight exhibited a 21% decrease in body weight. Fasting glucose levels in mice treated with 12.5 mg/kg of JB were significantly decreased (39%) indicating its efficacy in regulating hyperglycemia and obesity induced by HFD thus ameliorating the symptoms of type 2 diabetes. A series of energy metabolic genes, including Sirt1 (2.00-fold) and RAF1 (2.04-fold), were upregulated by JB, while rosiglitazone regulated the hepatic PPARγ only. Phytochemical analysis of JB indicated presence of a number of flavonoids and biflavonoids which seem to be responsible for the observed activity. It was concluded that JB acted as a multiple agonist of PPARα, PPARγ and LXR without the undesired effect of adipogenesis and exhibited the property of enhancing glucose uptake. The regulation of PPARα, PPARγ and LXR seems to be through Sirt1 and RAF1. In vivo results confirmed the antidiabetic and antiobesity potential of JB and indicated its utility in metabolic disorder and type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2 , Juniperus , Animales , Ratones , Peso Corporal , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Frutas/metabolismo , Glucosa/metabolismo , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Juniperus/metabolismo , Receptores X del Hígado/genética , Receptores X del Hígado/uso terapéutico , Ratones Endogámicos C57BL , Obesidad/tratamiento farmacológico , Obesidad/genética , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Rosiglitazona/uso terapéutico , Sirtuina 1
6.
Planta Med ; 85(6): 491-495, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30754052

RESUMEN

Aegeline is claimed to be a biologically active constituent of Aegle marmelos. Preclinical studies have reported possible therapeutic potential for aegeline against obesity and diabetes. In recent years, aegeline has been added to several weight loss products. However, the consumption of aegeline-containing supplements such as OxyELITE Pro and VERSA-1 has been linked to multiple cases of acute and chronic liver failure. This study was carried out to evaluate the pharmacokinetics and tissue distribution of aegeline in ND4 mice. Two doses of aegeline, a human equivalent dose (1×) 30 mg/kg and a 10× dose (300 mg/kg), were orally administered to the mice, and blood and tissue samples were collected over 8 h. The quantitative analysis of plasma and tissue homogenates (liver, kidney, and brain) was done by UHPLC-QTOF to determine aegeline concentrations. The peak plasma level of aegeline was achieved at a Tmax of 0.5 h, indicating its rapid absorption from the gastrointestinal tract. Aegeline was not detected in the plasma at 8 h after oral administration, with a half-life of 1.4 ± 0.01 and 1.3 ± 0.07 h for the 30 and 300 mg/kg doses, respectively. The half-life of aegeline in the liver was 1.2 h and 1.7 h for 30 and 300 mg/kg doses, respectively, with a Tmax of 1.9 h, which indicates relatively fast elimination of aegeline from the liver.


Asunto(s)
Amidas/farmacocinética , Administración Oral , Amidas/administración & dosificación , Animales , Cromatografía Líquida de Alta Presión , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA