Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Sci Rep ; 9(1): 17374, 2019 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-31758001

RESUMEN

After sperm-oocyte fusion, cortical granules (CGs) located in oocyte cortex undergo exocytosis and their content is released into the perivitelline space to avoid polyspermy. Thus, cortical granule exocytosis (CGE) is a key process for fertilization success. We have demonstrated that alpha-SNAP -and its functional partner NSF- mediate fusion of CGs with the plasma membrane in mouse oocytes. Here, we examined at cellular and ultrastructural level oocytes from hyh (hydrocephalus with hop gait) mice, which present a missense mutation in the Napa gene that results in the substitution of methionine for isoleucine at position 105 (M105I) of alpha-SNAP. Mutated alpha-SNAP was mislocalized in hyh oocytes while NSF expression increased during oocyte maturation. Staining of CGs showed that 9.8% of hyh oocytes had abnormal localization of CGs and oval shape. Functional tests showed that CGE was impaired in hyh oocytes. Interestingly, in vitro fertilization assays showed a decreased fertilization rate for hyh oocytes. Furthermore, fertilized hyh oocytes presented an increased polyspermy rate compared to wild type ones. At ultrastructural level, hyh oocytes showed small mitochondria and a striking accumulation and secretion of degradative structures. Our findings demonstrate the negative effects of alpha-SNAP M105 mutation on oocyte biology and further confirm the relevance of alpha-SNAP in female fertility.


Asunto(s)
Infertilidad Femenina/genética , Mutación Missense , Oocitos/citología , Oocitos/fisiología , Oogénesis/genética , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética , Sustitución de Aminoácidos/genética , Animales , Femenino , Fertilidad/genética , Fertilización/genética , Homocigoto , Isoleucina/genética , Masculino , Metafase/genética , Metionina/genética , Ratones , Ratones Transgénicos , Oocitos/ultraestructura
3.
Transl Res ; 210: 57-79, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30904442

RESUMEN

Radial glial cells (RGCs) are the neural stem/progenitor cells (NSPCs) that give rise to most of neurons and glial cells that constitute the adult central nervous system. A hallmark of RGCs is their polarization along the apical-basal axis. They extend a long basal process that contacts the pial surface and a short apical process to the ventricular surface. Adherens junctions (AJs) are organized as belt-like structures at the most-apical lateral plasma membrane of the apical processes. These junctional complexes anchor RGCs to each other and allow the recruitment of cytoplasmic proteins that act as apical-basal determinants. It has been proposed that disruption of AJs underlies the onset of different neurodevelopmental disorders. In fact, studies performed in different animal models indicate that loss of function of AJs-related proteins in NSPCs can disrupt cell polarity, imbalance proliferation and/or differentiation rates and increase cell death, which, in turn, lead to disruption of the cytoarchitecture of the ventricular zone, protrusion of non-polarized cells into the ventricles, cortical thinning, and ventriculomegaly/hydrocephalus, among other neuropathological findings. Recent Zika virus (ZIKV) outbreaks and the high comorbidity of ZIKV infection with congenital neurodevelopmental defects have led to the World Health Organization to declare a public emergency of international concern. Thus, noteworthy advances have been made in clinical and experimental ZIKV research. This review summarizes the current knowledge regarding the function of AJs in normal and pathological corticogenesis and focuses on the neuropathological and cellular mechanisms involved in congenital ZIKV syndrome, highlighting the potential role of cell-to-cell junctions between NSPCs in the etiopathogenesis of such syndrome.


Asunto(s)
Uniones Adherentes/metabolismo , Polaridad Celular , Células-Madre Neurales/patología , Trastornos del Neurodesarrollo/patología , Trastornos del Neurodesarrollo/virología , Infección por el Virus Zika/congénito , Animales , Humanos , Trastornos del Neurodesarrollo/epidemiología , Síndrome
4.
CNS Neurosci Ther ; 24(4): 343-352, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29582588

RESUMEN

AIMS: Huntington's disease (HD) is a neurodegenerative disorder characterized by progressive abnormalities in cognitive function, mental state, and motor control. HD is characterized by a failure in brain energy metabolism. It has been proposed that monocarboxylates, such as lactate, support brain activity. During neuronal synaptic activity, ascorbic acid released from glial cells stimulates lactate and inhibits glucose transport. The aim of this study was to evaluate the expression and function of monocarboxylate transporters (MCTs) in two HD models. METHODS: Using immunofluorescence, qPCR, and Western blot analyses, we explored mRNA and protein levels of MCTs in the striatum of R6/2 animals and HdhQ7/111 cells. We also evaluated MCT function in HdhQ7/111 cells using radioactive tracers and the fluorescent lactate sensor Laconic. RESULTS: We found no significant differences in the mRNA or protein levels of neuronal MCTs. Functional analyses revealed that neuronal MCT2 had a high catalytic efficiency in HD cells. Ascorbic acid did not stimulate lactate uptake in HD cells. Ascorbic acid was also unable to inhibit glucose transport in HD cells because they exhibit decreased expression of the neuronal glucose transporter GLUT3. CONCLUSION: We demonstrate that stimulation of lactate uptake by ascorbic acid is a consequence of inhibiting glucose transport. Supporting this, lactate transport stimulation by ascorbic acid in HD cells was completely restored by overexpressing GLUT3. Therefore, alterations in GLUT3 expression could be responsible for inefficient use of lactate in HD neurons, contributing to the metabolic failure observed in HD.


Asunto(s)
Transportador de Glucosa de Tipo 3/metabolismo , Enfermedad de Huntington/metabolismo , Ácido Láctico/metabolismo , Animales , Línea Celular , Cuerpo Estriado/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones Transgénicos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neuronas/metabolismo , ARN Mensajero/metabolismo , Ratas
5.
Sci Rep ; 7(1): 11765, 2017 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-28924180

RESUMEN

The balance between ovarian folliculogenesis and follicular atresia is critical for female fertility and is strictly regulated by a complex network of neuroendocrine and intra-ovarian signals. Despite the numerous functions executed by granulosa cells (GCs) in ovarian physiology, the role of multifunctional proteins able to simultaneously coordinate/modulate several cellular pathways is unclear. Soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (α-SNAP) is a multifunctional protein that participates in SNARE-mediated membrane fusion events. In addition, it regulates cell-to-cell adhesion, AMPK signaling, autophagy and apoptosis in different cell types. In this study we examined the expression pattern of α-SNAP in ovarian tissue and the consequences of α-SNAP (M105I) mutation (hyh mutation) in folliculogenesis and female fertility. Our results showed that α-SNAP protein is highly expressed in GCs and its expression is modulated by gonadotropin stimuli. On the other hand, α-SNAP-mutant mice show a reduction in α-SNAP protein levels. Moreover, increased apoptosis of GCs and follicular atresia, reduced ovulation rate, and a dramatic decline in fertility is observed in α-SNAP-mutant females. In conclusion, α-SNAP plays a critical role in the balance between follicular development and atresia. Consequently, a reduction in its expression/function (M105I mutation) causes early depletion of ovarian follicles and female subfertility.


Asunto(s)
Fertilidad/fisiología , Regulación de la Expresión Génica , Células de la Granulosa/metabolismo , Transducción de Señal/fisiología , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/biosíntesis , Animales , Apoptosis , Adhesión Celular/fisiología , Femenino , Atresia Folicular/genética , Atresia Folicular/metabolismo , Células de la Granulosa/citología , Fusión de Membrana/fisiología , Ratones , Ratones Mutantes , Mutación , Proteínas Solubles de Unión al Factor Sensible a la N-Etilmaleimida/genética
6.
Free Radic Biol Med ; 89: 1085-96, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26456058

RESUMEN

Failure in energy metabolism and oxidative damage are associated with Huntington's disease (HD). Ascorbic acid released during synaptic activity inhibits use of neuronal glucose, favouring lactate uptake to sustain brain activity. Here, we observe a decreased expression of GLUT3 in STHdhQ111 cells (HD cells) and R6/2 mice (HD mice). Localisation of GLUT3 is decreased at the plasma membrane in HD cells affecting the modulation of glucose uptake by ascorbic acid. An ascorbic acid analogue without antioxidant activity is able to inhibit glucose uptake in HD cells. The impaired modulation of glucose uptake by ascorbic acid is directly related to ROS levels indicating that oxidative stress sequesters the ability of ascorbic acid to modulate glucose utilisation. Therefore, in HD, a decrease in GLUT3 localisation at the plasma membrane would contribute to an altered neuronal glucose uptake during resting periods while redox imbalance should contribute to metabolic failure during synaptic activity.


Asunto(s)
Modelos Animales de Enfermedad , Metabolismo Energético/efectos de los fármacos , Transportador de Glucosa de Tipo 3/metabolismo , Enfermedad de Huntington/patología , Neuronas/patología , Estrés Oxidativo , Animales , Antioxidantes/farmacología , Ácido Ascórbico/farmacología , Western Blotting , Membrana Celular/metabolismo , Células Cultivadas , Femenino , Técnica del Anticuerpo Fluorescente , Glucosa/metabolismo , Transportador de Glucosa de Tipo 3/genética , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Masculino , Ratones , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oxidación-Reducción , ARN Mensajero/genética , Ratas , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
J Cell Physiol ; 226(12): 3286-94, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21321936

RESUMEN

Intracellular ascorbic acid is able to modulate neuronal glucose utilization between resting and activity periods. We have previously demonstrated that intracellular ascorbic acid inhibits deoxyglucose transport in primary cultures of cortical and hippocampal neurons and in HEK293 cells. The same effect was not seen in astrocytes. Since this observation was valid only for cells expressing glucose transporter 3 (GLUT3), we evaluated the importance of this transporter on the inhibitory effect of ascorbic acid on glucose transport. Intracellular ascorbic acid was able to inhibit (3)H-deoxyglucose transport only in astrocytes expressing GLUT3-EGFP. In C6 glioma cells and primary cultures of cortical neurons, which natively express GLUT3, the same inhibitory effect on (3)H-deoxyglucose transport and fluorescent hexose 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose (2-NBDG) was observed. Finally, knocking down the native expression of GLUT3 in primary cultured neurons and C6 cells using shRNA was sufficient to abolish the ascorbic acid-dependent inhibitory effect on uptake of glucose analogs. Uptake assays using real-time confocal microscopy demonstrated that ascorbic acid effect abrogation on 2-NBDG uptake in cultured neurons. Therefore, ascorbic acid would seem to function as a metabolic switch inhibiting glucose transport in neurons under glutamatergic synaptic activity through direct or indirect inhibition of GLUT3.


Asunto(s)
Ácido Ascórbico/farmacología , Corteza Cerebral/efectos de los fármacos , Desoxiglucosa/metabolismo , Glioma/metabolismo , Transportador de Glucosa de Tipo 3/antagonistas & inhibidores , Neuronas/efectos de los fármacos , Neuronas/metabolismo , 4-Cloro-7-nitrobenzofurazano/análogos & derivados , 4-Cloro-7-nitrobenzofurazano/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Línea Celular Tumoral , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Desoxiglucosa/análogos & derivados , Relación Dosis-Respuesta a Droga , Glioma/patología , Transportador de Glucosa de Tipo 3/genética , Transportador de Glucosa de Tipo 3/metabolismo , Glutamina/metabolismo , Cinética , Microscopía Confocal , Neuronas/patología , Interferencia de ARN , Ratas , Ratas Wistar , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/metabolismo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...