Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
J Chem Phys ; 149(7): 074305, 2018 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-30134690

RESUMEN

The influence of vibronic coupling on the outer valence ionic states of cis-dichloroethene has been investigated by recording photoelectron spectra over the excitation range 19-90 eV using plane polarized synchrotron radiation, for two polarization orientations. The photoelectron anisotropy parameters and electronic state branching ratios derived from these spectra have been compared to theoretical predictions obtained with the continuum multiple scattering approach. This comparison shows that the photoionization dynamics of the Ã2B2, B̃2A1, C̃2A2, and D̃2B1 states, all of which are formed through the ejection of an electron from a nominally chlorine lone-pair orbital, exhibit distinct evidence of the Cooper minimum associated with the halogen atom. While retaining a high degree of atomic character, these orbital ionizations nevertheless display clear distinctions. Simulations, assuming the validity of the Born-Oppenheimer and the Franck-Condon approximations, of the X̃2B1, Ã2B2, and D̃2B1 state photoelectron bands have allowed some of the vibrational structure observed in the experimental spectra to be assigned. The simulations provide a very satisfactory interpretation for the X̃2B1 state band but appear less successful for the Ã2B2 and D̃2B1 states, with irregularities appearing in both. The B̃2A1 and C̃2A2 state photoelectron bands exhibit very diffuse and erratic profiles that cannot be reproduced at this level. Photoelectron anisotropy parameters, ß, have been evaluated as a function of binding energy across the studied photon energy range. There is a clear step change in the ß values of the Ã2B2 band at the onset of the perturbed peak intensities, with ß evidently adopting the value of the B̃2A1 band ß. The D̃2B1 band ß values also display an unexpected vibrational level dependence, contradicting Franck-Condon expectations. These various behaviors are inferred to be a consequence of vibronic coupling in this system.


Asunto(s)
Dicloroetilenos/química , Dicloroetilenos/efectos de la radiación , Simulación por Computador , Electrones , Modelos Químicos , Modelos Moleculares , Espectroscopía de Fotoelectrones , Fotones , Estereoisomerismo , Vibración
2.
J Chem Phys ; 149(7): 074306, 2018 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-30134699

RESUMEN

The valence shell photoelectron spectrum of cis-dichloroethene has been studied both experimentally and theoretically. Photoelectron spectra have been recorded with horizontally and vertically plane polarized synchrotron radiation, thereby allowing the anisotropy parameters, characterizing the angular distributions, to be determined. The third-order algebraic-diagrammatic construction approximation scheme for the one-particle Green's function has been employed to compute the complete valence shell ionization spectrum. In addition, the vertical ionization energies have been calculated using the outer valence Green's function (OVGF) method and the equation-of-motion coupled-cluster, with single and double substitutions for calculating ionization potentials (EOM-IP-CCSD) model. The theoretical results have enabled assignments to be proposed for most of the structure observed in the experimental spectra, including the inner-valence regions dominated by satellite states. The linear vibronic coupling model has been employed to study the vibrational structure of the lowest photoelectron bands, using parameters obtained from ab initio calculations. The ground state optimized geometries and vibrational frequencies have been computed at the level of the second-order Møller-Plesset perturbation theory, and the dependence of the ionization energies on the nuclear configuration has been evaluated using the OVGF method. While the adiabatic approximation holds for the X̃2B1 state photoelectron band, the Ã2B2, B̃2A1, and C̃2A2 states interact vibronically and form a complex photoelectron band system with four distinct maxima. The D̃2B1 and Ẽ2B2 states also interact vibronically with each other. The potential energy surface of the D̃2B1 state is predicted to have a double-minimum shape with respect to the out-of-plane a2 deformations of the molecular structure. The single photoelectron band resulting from this interaction is characterized by a highly irregular structure, reflecting the non-adiabatic nuclear dynamics occurring on the two coupled potential energy surfaces forming a conical intersection close to the minimum of the Ẽ2B2 state.


Asunto(s)
Dicloroetilenos/química , Dicloroetilenos/efectos de la radiación , Simulación por Computador , Electrones , Modelos Químicos , Modelos Moleculares , Espectroscopía de Fotoelectrones , Fotones , Distribución de Poisson , Estereoisomerismo , Vibración
3.
Nat Commun ; 7: 13477, 2016 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-27917867

RESUMEN

In high-intensity laser light, matter can be ionized by direct multiphoton absorption even at photon energies below the ionization threshold. However on tuning the laser to the lowest resonant transition, the system becomes multiply excited, and more efficient, indirect ionization pathways become operative. These mechanisms are known as interatomic Coulombic decay (ICD), where one of the species de-excites to its ground state, transferring its energy to ionize another excited species. Here we show that on tuning to a higher resonant transition, a previously unknown type of interatomic Coulombic decay, intra-Rydberg ICD occurs. In it, de-excitation of an atom to a close-lying Rydberg state leads to electron emission from another neighbouring Rydberg atom. Moreover, systems multiply excited to higher Rydberg states will decay by a cascade of such processes, producing even more ions. The intra-Rydberg ICD and cascades are expected to be ubiquitous in weakly-bound systems exposed to high-intensity resonant radiation.

4.
Faraday Discuss ; 194: 537-562, 2016 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-27797386

RESUMEN

We studied the electronic and nuclear dynamics of I-containing organic molecules induced by intense hard X-ray pulses at the XFEL facility SACLA in Japan. The interaction with the intense XFEL pulse causes absorption of multiple X-ray photons by the iodine atom, which results in the creation of many electronic vacancies (positive charges) via the sequential electronic relaxation in the iodine, followed by intramolecular charge redistribution. In a previous study we investigated the subsequent fragmentation by Coulomb explosion of the simplest I-substituted hydrocarbon, iodomethane (CH3I). We carried out three-dimensional momentum correlation measurements of the atomic ions created via Coulomb explosion of the molecule and found that a classical Coulomb explosion model including charge evolution (CCE-CE model), which accounts for the concerted dynamics of nuclear motion and charge creation/charge redistribution, reproduces well the observed momentum correlation maps of fragment ions emitted after XFEL irradiation. Then we extended the study to 5-iodouracil (C4H3IN2O2, 5-IU), which is a more complex molecule of biological relevance, and confirmed that, in both CH3I and 5-IU, the charge build-up takes about 10 fs, while the charge is redistributed among atoms within only a few fs. We also adopted a self-consistent charge density-functional based tight-binding (SCC-DFTB) method to treat the fragmentations of highly charged 5-IU ions created by XFEL pulses. Our SCC-DFTB modeling reproduces well the experimental and CCE-CE results. We have also investigated the influence of the nuclear dynamics on the charge redistribution (charge transfer) using nonadiabatic quantum-mechanical molecular dynamics (NAQMD) simulation. The time scale of the charge transfer from the iodine atomic site to the uracil ring induced by nuclear motion turned out to be only ∼5 fs, indicating that, besides the molecular Auger decay in which molecular orbitals delocalized over the iodine site and the uracil ring are involved, the nuclear dynamics also play a role for ultrafast charge redistribution. The present study illustrates that the CCE-CE model as well as the SCC-DFTB method can be used for reconstructing the positions of atoms in motion, in combination with the momentum correlation measurement of the atomic ions created via XFEL-induced Coulomb explosion of molecules.

5.
Sci Rep ; 6: 36495, 2016 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-27883014

RESUMEN

Many studies have been conducted on the environmental impacts of combustion generated aerosols. Due to their complex composition and morphology, their chemical reactivity is not well understood and new developments of analysis methods are needed. We report the first demonstration of in-flight X-ray based characterizations of freshly emitted soot particles, which is of paramount importance for understanding the role of one of the main anthropogenic particulate contributors to global climate change. Soot particles, produced by a burner for several air-to-fuel ratios, were injected through an aerodynamic lens, focusing them to a region where they interacted with synchrotron radiation. X-ray photoelectron spectroscopy and carbon K-edge near-edge X-ray absorption spectroscopy were performed and compared to those obtained for supported samples. A good agreement is found between these samples, although slight oxidation is observed for supported samples. Our experiments demonstrate that NEXAFS characterization of supported samples provides relevant information on soot composition, with limited effects of contamination or ageing under ambient storage conditions. The highly surface sensitive XPS experiments of airborne soot indicate that the oxidation is different at the surface as compared to the bulk probed by NEXAFS. We also report changes in soot's work function obtained at different combustion conditions.

6.
Sci Rep ; 5: 15696, 2015 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-26498694

RESUMEN

The Laser-Induced Breakdown Detection technique (LIBD) was adapted to achieve fast in-situ characterization of nanoparticle beams focused under vacuum by an aerodynamic lens. The method employs a tightly focused, 21 µm, scanning laser microprobe which generates a local plasma induced by the laser interaction with a single particle. A counting mode optical detection allows the achievement of 2D mappings of the nanoparticle beams with a reduced analysis time thanks to the use of a high repetition rate infrared pulsed laser. As an example, the results obtained with Tryptophan nanoparticles are presented and the advantages of this method over existing ones are discussed.

7.
J Chem Phys ; 143(12): 124306, 2015 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-26429010

RESUMEN

Soft X-ray photoelectron spectra of Ar 2p levels of atomic argon and argon clusters are recorded over an extended range of photon energies. The Ar 2p intensity ratios between atomic argon and clusters' surface and bulk components reveal oscillations similar to photoelectron extended X-ray absorption fine structure signal (PEXAFS). We demonstrate here that this technique allows us to analyze separately the PEXAFS signals from surface and bulk sites of free-standing, neutral clusters, revealing a bond contraction at the surface.

8.
J Chem Phys ; 143(14): 144103, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26472359

RESUMEN

The valence-shell ionization spectrum of bromobenzene, as a representative halogen substituted aromatic, was studied using the non-Dyson third-order algebraic-diagrammatic construction [nD-ADC(3)] approximation for the electron propagator. This method, also referred to as IP-ADC(3), was implemented as a part of the Q-Chem program and enables large-scale calculations of the ionization spectra, where the computational effort scales as n(5) with respect to the number of molecular orbitals n. The IP-ADC(3) scheme is ideally suited for investigating low-lying ionization transitions, so fresh insight could be gained into the cationic state manifold of bromobenzene. In particular, the present IP-ADC(3) calculations with the cc-pVTZ basis reveal a whole class of low-lying low-intensity two-hole-one-particle (2h-1p) doublet and quartet states, which are relevant to various photoionization processes. The good qualitative agreement between the theoretical spectral profile for the valence-shell ionization transitions generated with the smaller cc-pVDZ basis set and the experimental photoelectron spectrum measured at a photon energy of 80 eV on the PLÉIADES beamline at the Soleil synchrotron radiation source allowed all the main features to be assigned. Some theoretical aspects of the ionization energy calculations concerning the use of various approximation schemes and basis sets are discussed.

9.
J Chem Phys ; 143(14): 144304, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26472376

RESUMEN

Angle resolved photoelectron spectra of the X̃(2)B1, Ã(2)A2, B̃(2)B2, and C̃(2)B1 states of bromobenzene have been recorded over the excitation range 20.5-94 eV using linearly polarized synchrotron radiation. The photoelectron anisotropy parameters and electronic branching ratios derived from these spectra have been compared to theoretical predictions obtained with the continuum multiple scattering approach. This comparison shows that ionization from the 8b2 orbital and, to a lesser extent, the 4b1 orbital is influenced by the Cooper minimum associated with the bromine atom. The 8b2 and 4b1 orbitals are nominally bromine lone-pairs, but the latter orbital interacts strongly with the π-orbitals in the benzene ring and this leads to a reduced atomic character. Simulations of the X̃(2)B1, B̃(2)B2, and C̃(2)B1 state photoelectron bands have enabled most of the vibrational structures appearing in the experimental spectra to be assigned. Many of the photoelectron peaks exhibit an asymmetric shape with a tail towards low binding energy. This asymmetry has been examined in the simulations of the vibrationally unexcited peak, due mainly to the adiabatic transition, in the X̃(2)B1 state photoelectron band. The simulations show that the asymmetric profile arises from hot-band transitions. The inclusion of transitions originating from thermally populated levels results in a satisfactory agreement between the experimental and simulated peak shapes.

10.
Sci Rep ; 5: 10977, 2015 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-26077863

RESUMEN

Using electron spectroscopy, we have investigated nanoplasma formation from noble gas clusters exposed to high-intensity hard-x-ray pulses at ~5 keV. Our experiment was carried out at the SPring-8 Angstrom Compact free electron LAser (SACLA) facility in Japan. Dedicated theoretical simulations were performed with the molecular dynamics tool XMDYN. We found that in this unprecedented wavelength regime nanoplasma formation is a highly indirect process. In the argon clusters investigated, nanoplasma is mainly formed through secondary electron cascading initiated by slow Auger electrons. Energy is distributed within the sample entirely through Auger processes and secondary electron cascading following photoabsorption, as in the hard x-ray regime there is no direct energy transfer from the field to the plasma. This plasma formation mechanism is specific to the hard-x-ray regime and may, thus, also be important for XFEL-based molecular imaging studies. In xenon clusters, photo- and Auger electrons contribute more significantly to the nanoplasma formation. Good agreement between experiment and simulations validates our modelling approach. This has wide-ranging implications for our ability to quantitatively predict the behavior of complex molecular systems irradiated by high-intensity hard x-rays.

11.
J Phys Chem A ; 119(23): 5971-8, 2015 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-25761399

RESUMEN

Photoelectron diffraction is a well-established technique for structural characterization of solids, based on the interference of the native photoelectron wave with those scattered from the neighboring atoms. For isolated systems in the gas phase similar studies suffer from orders of magnitude lower signals due to the very small sample density. Here we present a detailed study of the vibrationally resolved B 1s photoionization cross section of BF3 molecule. A combination of high-resolution photoelectron spectroscopy measurements and of state-of-the-art static-exchange and time-dependent DFT calculations shows the evolution of the photon energy dependence of the cross section from a complete trapping of the photoelectron wave (low energies) to oscillations due to photoelectron diffraction phenomena. The diffraction pattern allows one to access structural information both for the ground neutral state of the molecule and for the core-ionized cation. Due to a significant change in geometry between the ground and the B 1s(-1) core-ionized state in the BF3 molecule, several vibrational final states of the cation are populated, allowing investigation of eight different relative vibrationally resolved photoionization cross sections. Effects due to recoil induced by the photoelectron emission are also discussed.

12.
J Phys Chem A ; 118(27): 4975-81, 2014 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-25007894

RESUMEN

Due to strong electron correlation effects and electron coupling with nuclear motion, the molecular inner-valence photoionization is still a challenge in electron spectroscopy, resulting in several interesting phenomena such as drastic changes of angular dependencies, spin-orbit induced predissociation, and complex interplay between adiabatic and nonadiabatic transitions. We investigated the excited electronic states of HCl(+) in the binding energy range 27.5-30.5 eV using synchrotron radiation based high-resolution inner-valence photoelectron spectroscopy with angular resolution and interpreted the observations with the help of ab initio calculations. Overlapping electronic states in this region were disentangled through the analysis of photoelectron emission anisotropies. For instance, a puzzling transition, which does not seem to obey either an adiabatic or a nonadiabatic picture, has been identified at ∼28.6 eV binding energy. By this study, we show that ultrahigh-resolution photoelectron spectroscopy with angular selectivity represents a powerful tool to probe the highly excited ionic molecular electronic states and their intricate couplings.

13.
Nat Commun ; 5: 4281, 2014 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-24969734

RESUMEN

Understanding molecular femtosecond dynamics under intense X-ray exposure is critical to progress in biomolecular imaging and matter under extreme conditions. Imaging viruses and proteins at an atomic spatial scale and on the time scale of atomic motion requires rigorous, quantitative understanding of dynamical effects of intense X-ray exposure. Here we present an experimental and theoretical study of C60 molecules interacting with intense X-ray pulses from a free-electron laser, revealing the influence of processes not previously reported. Our work illustrates the successful use of classical mechanics to describe all moving particles in C60, an approach that scales well to larger systems, for example, biomolecules. Comparisons of the model with experimental data on C60 ion fragmentation show excellent agreement under a variety of laser conditions. The results indicate that this modelling is applicable for X-ray interactions with any extended system, even at higher X-ray dose rates expected with future light sources.


Asunto(s)
Fulerenos , Simulación de Dinámica Molecular , Rayos X , Explosiones , Rayos Láser
14.
J Chem Phys ; 139(12): 124306, 2013 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-24089766

RESUMEN

We report unambiguous experimental and theoretical evidence of intramolecular photoelectron diffraction in the collective vibrational excitation that accompanies high-energy photoionization of gas-phase CF4, BF3, and CH4 from the 1s orbital of the central atom. We show that the ratios between vibrationally resolved photoionization cross sections (v-ratios) exhibit pronounced oscillations as a function of photon energy, which is the fingerprint of electron diffraction by the surrounding atomic centers. This interpretation is supported by the excellent agreement between first-principles static-exchange and time-dependent density functional theory calculations and high resolution measurements, as well as by qualitative agreement at high energies with a model in which atomic displacements are treated to first order of perturbation theory. The latter model allows us to rationalize the results for all the v-ratios in terms of a generalized v-ratio, which contains information on the structure of the above three molecules and the corresponding molecular cations. A fit of the measured v-ratios to a simple formula based on this model suggests that the method could be used to obtain structural information of both neutral and ionic molecular species.

15.
Phys Rev Lett ; 110(17): 173005, 2013 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-23679721

RESUMEN

We have investigated multiphoton multiple ionization dynamics of xenon atoms using a new x-ray free-electron laser facility, SPring-8 Angstrom Compact free electron LAser (SACLA) in Japan, and identified that Xe(n+) with n up to 26 is produced at a photon energy of 5.5 keV. The observed high charge states (n≥24) are produced via five-photon absorption, evidencing the occurrence of multiphoton absorption involving deep inner shells. A newly developed theoretical model, which shows good agreement with the experiment, elucidates the complex pathways of sequential electronic decay cascades accessible in heavy atoms. The present study of heavy-atom ionization dynamics in high-intensity hard-x-ray pulses makes a step forward towards molecular structure determination with x-ray free-electron lasers.

16.
Phys Rev Lett ; 108(19): 193005, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-23003034

RESUMEN

X-ray photoemission spectroscopy is used in a great variety of research fields; one observable is the sample's stoichiometry. The stoichiometry can be deduced based on the expectation that the ionization cross sections for innershell orbitals are independent of the molecular composition. Here we used chlorine-substituted ethanes in the gas phase to investigate the apparent carbon stoichiometry. We observe a nonstoichiometric ratio for a wide range of photon energies, the ratio exhibits x-ray-absorption fine structure spectroscopy (EXAFS)-like oscillations and hundreds of eV above the C1s ionization approaches a value far from 1. These effects can be accounted for by considering the scattering of the outgoing photoelectron, which we model by multiple-scattering EXAFS calculations, and by considering the effects of losses due to monopole shakeup and shakeoff and to intramolecular inelastic scattering processes.

17.
Phys Rev Lett ; 106(19): 193009, 2011 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-21668155

RESUMEN

The first experimental evidence of rotational Doppler broadening in photoelectron spectra, reported here, show good agreement with recently described theoretical predictions. The dependence of the broadening on temperature and photoelectron kinetic energy is quantitatively predicted by the theory. The experiments verify that the rotational contributions to the linewidth are comparable to those from translational Doppler broadening and must be considered in the analysis of high-resolution photoelectron spectra. A classical model accounting for this newly observed effect is presented.

18.
Top Companion Anim Med ; 25(1): 64-7, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20188341

RESUMEN

This article describes a case of Chinaberry tree poisoning diagnosed in a dog. The initial clinical signs were variable and included tremors (muscular seizures) and a moderate limp in the dog's back leg, which evolved to a more severe condition in the following hours. Abdominal radiographic evaluation was requested, and abundant small, foreign, radio-dense bodies were detected, which were associated with Chinaberry tree fruits after surgical extraction. Adequate treatment was established, and the patient recovered completely. In addition, we compare clinical and gross postmortem findings in other similar cases reported in the literature. There is a general lack of information of such poisoning in pets.


Asunto(s)
Enfermedades de los Perros/etiología , Melia azedarach/envenenamiento , Intoxicación por Plantas/veterinaria , Animales , Enfermedades de los Perros/diagnóstico , Enfermedades de los Perros/terapia , Perros , Femenino , Dolor/etiología , Dolor/veterinaria , Intoxicación por Plantas/diagnóstico , Intoxicación por Plantas/etiología , Intoxicación por Plantas/terapia , Resultado del Tratamiento
19.
J Chem Phys ; 127(11): 114315, 2007 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-17887845

RESUMEN

We have studied the ultrafast dissociation of the H2S molecule upon S 2p3/2-->6a1 inner-shell excitation by combining high-resolution resonant Auger spectroscopy and energy-selected Auger electron-ion coincidence measurements. Auger final states have been correlated to the different fragmentation pathways (S+, HS+, and H2S+ ions). As an original result, we evidence a three-step mechanism to describe the resonant production of S+: the Auger recombination in the HS* fragment is followed for the A 3Pi and c 1Pi states by the S++H fragmentation mechanism.

20.
J Chem Phys ; 123(8): 084302, 2005 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-16164286

RESUMEN

To get further insight into the CH2BrCl site-selective fragmentation previously observed upon inner-shell ionization, we have performed high-resolution Br 3d and Cl 2p Auger and spin-orbit resolved Br 3d Auger spectra, and studied the dissociation properties of the CH2BrCl2+ dication formed at threshold by means of threshold electron pair-ion coincidence measurements. The key point is that the origin of site-specific bond breaking is found in the Auger decay itself, as it preferentially populates selected dication states. Whereas the predominance of the C-Br bond breaking is observed in both threshold and inner-shell studies, no signature of selective C-Cl rupture is reported for the dication formed at threshold.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...