Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37569667

RESUMEN

Microcephalic Osteodysplastic Primordial Dwarfism type II (MOPDII) represents the most common form of primordial dwarfism. MOPD clinical features include severe prenatal and postnatal growth retardation, postnatal severe microcephaly, hypotonia, and an increased risk for cerebrovascular disease and insulin resistance. Autosomal recessive biallelic loss-of-function genomic variants in the centrosomal pericentrin (PCNT) gene on chromosome 21q22 cause MOPDII. Over the past decade, exome sequencing (ES) and massive RNA sequencing have been effectively employed for both the discovery of novel disease genes and to expand the genotypes of well-known diseases. In this paper we report the results both the RNA sequencing and ES of three patients affected by MOPDII with the aim of exploring whether differentially expressed genes and previously uncharacterized gene variants, in addition to PCNT pathogenic variants, could be associated with the complex phenotype of this disease. We discovered a downregulation of key factors involved in growth, such as IGF1R, IGF2R, and RAF1, in all three investigated patients. Moreover, ES identified a shortlist of genes associated with deleterious, rare variants in MOPDII patients. Our results suggest that Next Generation Sequencing (NGS) technologies can be successfully applied for the molecular characterization of the complex genotypic background of MOPDII.


Asunto(s)
Enanismo , Microcefalia , Osteocondrodisplasias , Humanos , Femenino , Embarazo , Microcefalia/genética , Exoma/genética , Transcriptoma , Retardo del Crecimiento Fetal/genética , Enanismo/genética , Osteocondrodisplasias/genética , Genotipo , Mutación
2.
J Am Chem Soc ; 141(30): 12109-12120, 2019 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-31283225

RESUMEN

Copper (Cu) is required for maturation of cuproenzymes, cell proliferation, and angiogenesis, and its transport entails highly specific protein-protein interactions. In humans, the Cu chaperone Atox1 mediates Cu(I) delivery to P-type ATPases Atp7a and Atp7b (the Menkes and Wilson disease proteins, respectively), which are responsible for Cu release to the secretory pathway and excess Cu efflux. Cu(I) handover is believed to occur through the formation of three-coordinate intermediates where the metal ion is simultaneously linked to Atox1 and to a soluble domain of Cu-ATPases, both sharing a CxxC dithiol motif. The ultrahigh thermodynamic stability of chelating S-donor ligands secures the redox-active and potentially toxic Cu(I) ion, while their kinetic lability allows facile metal transfer. The same CxxC motifs can interact with and mediate the biological response to antitumor platinum drugs, which are among the most used chemotherapeutics. We show that cisplatin and an oxaliplatin analogue can specifically bind to the heterodimeric complex Atox1-Cu(I)-Mnk1 (Mnk1 is the first soluble domain of Atp7a), thus leading to a kinetically stable adduct that has been structurally characterized by solution NMR and X-ray crystallography. Of the two possible binding configurations of the Cu(I) ion in the cage made by the CxxC motifs of the two proteins, one (bidentate Atox1 and monodentate Mnk1) is less stable and more reactive toward cis-Pt(II) compounds, as shown by using mutated proteins. A Cu(I) ion can be retained at the Pt(II) coordination site but can be released to glutathione (a physiological thiol) or to other complexing agents. The Pt(II)-supported heterodimeric complex does not form if Zn(II) is used in place of Cu(I) and transplatin instead of cisplatin. The results indicate that Pt(II) drugs can specifically affect Cu(I) homeostasis by interfering with the rapid exchange of Cu(I) between Atox1 and Cu-ATPases with consequences on cancer cell viability and migration.


Asunto(s)
Antineoplásicos/farmacología , Cisplatino/farmacología , Proteínas Transportadoras de Cobre/antagonistas & inhibidores , ATPasas Transportadoras de Cobre/antagonistas & inhibidores , Cobre/metabolismo , Chaperonas Moleculares/antagonistas & inhibidores , Oxaliplatino/farmacología , Fragmentos de Péptidos/antagonistas & inhibidores , Antineoplásicos/química , Cisplatino/química , Proteínas Transportadoras de Cobre/metabolismo , ATPasas Transportadoras de Cobre/metabolismo , Cristalografía por Rayos X , Humanos , Cinética , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Estructura Molecular , Oxaliplatino/química , Fragmentos de Péptidos/metabolismo , Termodinámica
3.
Glob Chall ; 2(1): 1700089, 2018 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-31565305

RESUMEN

The great antimicrobial and antioxidant potential of enzymes makes them prone to be used as active packaging materials to preserve food from contamination or degradation. Major drawbacks are connected to the use of enzymes freely dispersed in solution, due to reduced protein stability. The immobilization of enzymes on solid supports to create biocatalytic interfaces has instead been proven to increase their stability and efficiency. In this work, it is shown that enzymes crystallized on hydrogel composite membranes (HCMs) can exert an effective antimicrobial action, thus making the composite membrane and crystals biofilm a potential active substrate for food packaging applications. The antimicrobial hen egg white lysozyme is crystallized on the surface of the hydrogel layer of HCMs, and its activity is determined by measuring the decrease in absorbance of Micrococcus lysodeikticus culture incubated with the specimen. The overall catalytic efficiency of the antimicrobial HCMs increases by a factor of 2 compared to the pure enzyme dissolved in solution at the same quantity. Because the enzyme in crystalline form is present in higher concentration and purity than in the solution, both its overall catalytic efficiency and antimicrobial action increase. Moreover, the hydrogel environment allows a better protein stabilization and retention during crystals dissolution.

4.
Hum Genome Var ; 4: 17043, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29138690

RESUMEN

Congenital Factor XI (FXI) deficiency shows a high variability in clinical phenotype. To date, many allele variants have been shown to cause this bleeding disorder. However, the genotype-phenotype relationship is difficult to establish. This report provides insights into this bleeding disorder. Sixteen unrelated Italian index cases with congenital FXI deficiency and their relatives were investigated. After the identification of the deficiency, we obtained DNA from each subject and analyzed the FXI gene using direct sequencing. We identified 5 and 11 individuals with severe and moderate deficiency of FXI activity, respectively. Most patients (8/16) carried mutations in the Apple 2 domain and 4 patients showed c.403G>T (p.Glu135*; type II mutation). Four novel compound heterozygosities were identified. Bleeding symptoms were present in two severely deficient subjects carrying the combinations c.901T>C (p.Phe301Leu)/c.1556G>A (p.Trp519*) and c.943G>A (p.Glu315)/c.1556G>A (p.Trp519*), respectively. Bleeding episodes were also observed in the presence of a moderate deficiency in two individuals heterozygous for c.449C>T (p.Thr150Met) and c.1253G>T (p.Gly418Val), respectively. One novel mutation, c.1682C>A (p.Ala561Asp), was identified as potentially deleterious in an asymptomatic individual. We confirm an unclear prediction of phenotype from mutational data. The FXI levels should be coupled with FXI analysis for a more comprehensive prediction of the bleeding phenotype in FXI deficiency.

5.
Toxins (Basel) ; 9(2)2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28125067

RESUMEN

Members of the fungal genus Fusarium can produce numerous secondary metabolites, including the nonribosomal mycotoxins beauvericin (BEA) and enniatins (ENNs). Both mycotoxins are synthesized by the multifunctional enzyme enniatin synthetase (ESYN1) that contains both peptide synthetase and S-adenosyl-l-methionine-dependent N-methyltransferase activities. Several Fusarium species can produce ENNs, BEA or both, but the mechanism(s) enabling these differential metabolic profiles is unknown. In this study, we analyzed the primary structure of ESYN1 by sequencing esyn1 transcripts from different Fusarium species. We measured ENNs and BEA production by ultra-performance liquid chromatography coupled with photodiode array and Acquity QDa mass detector (UPLC-PDA-QDa) analyses. We predicted protein structures, compared the predictions by multivariate analysis methods and found a striking correlation between BEA/ENN-producing profiles and ESYN1 three-dimensional structures. Structural differences in the ß strand's Asn789-Ala793 and His797-Asp802 portions of the amino acid adenylation domain can be used to distinguish BEA/ENN-producing Fusarium isolates from those that produce only ENN.


Asunto(s)
Depsipéptidos/biosíntesis , Fusarium/metabolismo , Secuencia de Aminoácidos , Cromatografía Liquida , Fusarium/clasificación , Fusarium/genética , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Metiltransferasas/química , Metiltransferasas/genética , Metiltransferasas/metabolismo , Simulación de Dinámica Molecular , Análisis Multivariante , Péptido Sintasas/química , Péptido Sintasas/genética , Péptido Sintasas/metabolismo , Dominios Proteicos , Espectrometría de Masa por Ionización de Electrospray , Relación Estructura-Actividad
6.
Inorg Chem ; 55(13): 6563-73, 2016 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-27305454

RESUMEN

Copper trafficking proteins have been implicated in the cellular response to platinum anticancer drugs. We investigated the reaction of the chaperone Atox1 with an activated form of oxaliplatin, the third platinum drug to reach worldwide approval. Unlike cisplatin, which contains monodentate ammines, oxaliplatin contains chelated 1,2-diaminocyclohexane (DACH), which is more resistant to displacement by nucleophiles. In solution, one or two {Pt(DACH)(2+)} moieties bind to the conserved CXXC metal-binding motif of Atox1; in the latter case the two sulfur atoms likely bridging the two platinum units. At longer reaction times, a dimeric species is formed whose composition, Atox12·Pt(2+)2, indicates complete loss of the diamine ligands. Such a dimerization process is accompanied by partial unfolding of the protein. Crystallization experiments aiming at the characterization of the monomeric species have afforded, instead, a dimeric species resembling that already obtained by Boal and Rosenzweig in a similar reaction performed with cisplatin. However, while in the latter case there was only one Pt-binding site (0.4 occupancy) made of four sulfur atoms of the CXXC motifs of the two Atox1 chains in a tetrahedral arrangement, we found, in addition, a secondary Pt-binding site involving Cys41 of the B chain (0.25 occupancy). Moreover, both platinum atoms have lost their diamines. Thus, there appears to be little relationship between what is observed in solution and what is formed in the solid state. Since full occupancy of the tetrahedral cavity is a common feature of all Atox1 dimeric structures obtained with other metal ions (Cu(+), Cd(2+), and Hg(2+)), we propose that in the case of platinum, where the occupancy is only 0.4, the remaining cavities are occupied by Cu(+) ions. Experimental evidence is reported in support of the latter hypothesis. Our proposal represents a meeting point between the initial proposal of Boal and Rosenzweig (0.4 Pt occupancy) and the reinterpretation of the original crystallographic data put forward by Shabalin et al. (1 Cu occupancy), and could apply to other cases.


Asunto(s)
Cobre/metabolismo , Metalochaperonas/metabolismo , Compuestos Organoplatinos/metabolismo , Sitios de Unión , Cobre/química , Proteínas Transportadoras de Cobre , Cristalografía por Rayos X , Dimerización , Electroforesis en Gel de Poliacrilamida , Humanos , Metalochaperonas/química , Modelos Moleculares , Chaperonas Moleculares , Compuestos Organoplatinos/química , Oxaliplatino , Análisis Espectral/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...