Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Transl Med ; 16(743): eadg3036, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630850

RESUMEN

Spontaneous pain, a major complaint of patients with neuropathic pain, has eluded study because there is no reliable marker in either preclinical models or clinical studies. Here, we performed a comprehensive electroencephalogram/electromyogram analysis of sleep in several mouse models of chronic pain: neuropathic (spared nerve injury and chronic constriction injury), inflammatory (Freund's complete adjuvant and carrageenan, plantar incision) and chemical pain (capsaicin). We find that peripheral axonal injury drives fragmentation of sleep by increasing brief arousals from non-rapid eye movement sleep (NREMS) without changing total sleep amount. In contrast to neuropathic pain, inflammatory or chemical pain did not increase brief arousals. NREMS fragmentation was reduced by the analgesics gabapentin and carbamazepine, and it resolved when pain sensitivity returned to normal in a transient neuropathic pain model (sciatic nerve crush). Genetic silencing of peripheral sensory neurons or ablation of CGRP+ neurons in the parabrachial nucleus prevented sleep fragmentation, whereas pharmacological blockade of skin sensory fibers was ineffective, indicating that the neural activity driving the arousals originates ectopically in primary nociceptor neurons and is relayed through the lateral parabrachial nucleus. These findings identify NREMS fragmentation by brief arousals as an effective proxy to measure spontaneous neuropathic pain in mice.


Asunto(s)
Neuralgia , Nociceptores , Humanos , Ratas , Ratones , Animales , Movimientos Oculares , Hiperalgesia/complicaciones , Ratas Sprague-Dawley , Sueño , Modelos Animales de Enfermedad
2.
Nat Neurosci ; 26(10): 1805-1819, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37735497

RESUMEN

The prefrontal cortex (PFC) enables mammals to respond to situations, including internal states, with appropriate actions. One such internal state could be 'tiredness'. Here, using activity tagging in the mouse PFC, we identified particularly excitable, fast-spiking, somatostatin-expressing, γ-aminobutyric acid (GABA) (PFCSst-GABA) cells that responded to sleep deprivation. These cells projected to the lateral preoptic (LPO) hypothalamus and the lateral hypothalamus (LH). Stimulating PFCSst-GABA terminals in the LPO hypothalamus caused sleep-preparatory behavior (nesting, elevated theta power and elevated temperature), and stimulating PFCSst-GABA terminals in the LH mimicked recovery sleep (non-rapid eye-movement sleep with higher delta power and lower body temperature). PFCSst-GABA terminals had enhanced activity during nesting and sleep, inducing inhibitory postsynaptic currents on diverse cells in the LPO hypothalamus and the LH. The PFC also might feature in deciding sleep location in the absence of excessive fatigue. These findings suggest that the PFC instructs the hypothalamus to ensure that optimal sleep takes place in a suitable place.


Asunto(s)
Área Hipotalámica Lateral , Neuronas , Ratones , Animales , Área Hipotalámica Lateral/metabolismo , Neuronas/fisiología , Somatostatina/metabolismo , Sueño/fisiología , Hipotálamo/fisiología , Ácido gamma-Aminobutírico , Corteza Prefrontal/fisiología , Mamíferos/metabolismo
3.
J Neurosci ; 42(27): 5389-5409, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35649726

RESUMEN

The lateral preoptic (LPO) hypothalamus is a center for NREM and REM sleep induction and NREM sleep homeostasis. Although LPO is needed for NREM sleep, we found that calcium signals were, surprisingly, highest in REM sleep. Furthermore, and equally surprising, NMDA receptors in LPO were the main drivers of excitation. Deleting the NMDA receptor GluN1 subunit from LPO abolished calcium signals in all cells and produced insomnia. Mice of both sexes had highly fragmented NREM sleep-wake patterns and could not generate conventionally classified REM sleep. The sleep phenotype produced by deleting NMDA receptors depended on where in the hypothalamus the receptors were deleted. Deleting receptors from the anterior hypothalamic area (AHA) did not influence sleep-wake states. The sleep fragmentation originated from NMDA receptors on GABA neurons in LPO. Sleep fragmentation could be transiently overcome with sleeping medication (zolpidem) or sedatives (dexmedetomidine; Dex). By contrast, fragmentation persisted under high sleep pressure produced by sleep deprivation (SD), mice had a high propensity to sleep but woke up. By analyzing changes in δ power, sleep homeostasis (also referred to as "sleep drive") remained intact after NMDA receptor ablation. We suggest NMDA glutamate receptor activation stabilizes firing of sleep-on neurons and that mechanisms of sleep maintenance differ from that of the sleep drive itself.SIGNIFICANCE STATEMENT Insomnia is a common affliction. Most insomniacs feel that they do not get enough sleep, but in fact, often have good amounts of sleep. Their sleep, however, is fragmented, and sufferers wake up feeling unrefreshed. It is unknown how sleep is maintained once initiated. We find that in mice, NMDA-type glutamate receptors in the hypothalamus are the main drivers of excitation and are required for a range of sleep properties: they are, in fact, needed for both sustained NREM sleep periods, and REM sleep generation. When NMDA receptors are selectively reduced from inhibitory preoptic (PO) neurons, mice have normal total amounts of sleep but high sleep-wake fragmentation, providing a model for studying intractable insomnia.


Asunto(s)
Trastornos del Inicio y del Mantenimiento del Sueño , Sueño REM , Animales , Calcio , Electroencefalografía , Femenino , Hipotálamo , Masculino , Ratones , N-Metilaspartato , Receptores de N-Metil-D-Aspartato , Sueño/fisiología , Privación de Sueño , Sueño REM/fisiología , Vigilia/fisiología
4.
Curr Biol ; 29(19): 3315-3322.e3, 2019 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-31543455

RESUMEN

Our urge to sleep increases with time spent awake, until sleep becomes inescapable. The sleep following sleep deprivation is longer and deeper, with an increased power of delta (0.5-4 Hz) oscillations, a phenomenon termed sleep homeostasis [1-4]. Although widely expressed genes regulate sleep homeostasis [1, 4-10] and the process is tracked by somnogens and phosphorylation [1, 3, 7, 11-14], at the circuit level sleep homeostasis has remained mysterious. Previously, we found that sedation induced with α2-adrenergic agonists (e.g., dexmedetomidine) and sleep homeostasis both depend on the preoptic (PO) hypothalamus [15, 16]. Dexmedetomidine, increasingly used for long-term sedation in intensive care units [17], induces a non-rapid-eye-movement (NREM)-like sleep but with undesirable hypothermia [18, 19]. Within the PO, various neuronal subtypes (e.g., GABA/galanin and glutamate/NOS1) induce NREM sleep [20-22] and concomitant body cooling [21, 22]. This could be because NREM sleep's restorative effects depend on lower body temperature [23, 24]. Here, we show that mice with lesioned PO galanin neurons have reduced sleep homeostasis: in the recovery sleep following sleep deprivation there is a diminished increase in delta power, and the mice catch up little on lost sleep. Furthermore, dexmedetomidine cannot induce high-power delta oscillations or sustained hypothermia. Some hours after dexmedetomidine administration to wild-type mice there is a rebound in delta power when they enter normal NREM sleep, reminiscent of emergence from torpor. This delta rebound is reduced in mice lacking PO galanin neurons. Thus, sleep homeostasis and dexmedetomidine-induced sedation require PO galanin neurons and likely share common mechanisms.


Asunto(s)
Agonistas de Receptores Adrenérgicos alfa 2/farmacología , Dexmedetomidina/farmacología , Galanina/metabolismo , Hipnóticos y Sedantes/farmacología , Neuronas/fisiología , Privación de Sueño/metabolismo , Sueño/fisiología , Animales , Femenino , Homeostasis , Masculino , Ratones , Neuronas/efectos de los fármacos , Sueño/efectos de los fármacos
5.
Nat Neurosci ; 22(1): 106-119, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30559475

RESUMEN

We screened for novel circuits in the mouse brain that promote wakefulness. Chemogenetic activation experiments and electroencephalogram recordings pointed to glutamatergic/nitrergic (NOS1) and GABAergic neurons in the ventral tegmental area (VTA). Activating glutamatergic/NOS1 neurons, which were wake- and rapid eye movement (REM) sleep-active, produced wakefulness through projections to the nucleus accumbens and the lateral hypothalamus. Lesioning the glutamate cells impaired the consolidation of wakefulness. By contrast, activation of GABAergic VTA neurons elicited long-lasting non-rapid-eye-movement-like sleep resembling sedation. Lesioning these neurons produced an increase in wakefulness that persisted for at least 4 months. Surprisingly, these VTA GABAergic neurons were wake- and REM sleep-active. We suggest that GABAergic VTA neurons may limit wakefulness by inhibiting the arousal-promoting VTA glutamatergic and/or dopaminergic neurons and through projections to the lateral hypothalamus. Thus, in addition to its contribution to goal- and reward-directed behaviors, the VTA has a role in regulating sleep and wakefulness.


Asunto(s)
Neuronas GABAérgicas/fisiología , Ácido Glutámico/metabolismo , Neuronas/fisiología , Sueño/fisiología , Área Tegmental Ventral/fisiología , Vigilia/fisiología , Animales , Neuronas Dopaminérgicas/fisiología , Ratones , Óxido Nítrico Sintasa de Tipo I/metabolismo , Sueño REM/fisiología , Área Tegmental Ventral/metabolismo
6.
Curr Biol ; 28(14): 2263-2273.e4, 2018 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-30017485

RESUMEN

Mammals, including humans, prepare for sleep by nesting and/or curling up, creating microclimates of skin warmth. To address whether external warmth induces sleep through defined circuitry, we used c-Fos-dependent activity tagging, which captures populations of activated cells and allows them to be reactivated to test their physiological role. External warming tagged two principal groups of neurons in the median preoptic (MnPO)/medial preoptic (MPO) hypothalamic area. GABA neurons located mainly in MPO produced non-rapid eye movement (NREM) sleep but no body temperature decrease. Nitrergic-glutamatergic neurons in MnPO-MPO induced both body cooling and NREM sleep. This circuitry explains how skin warming induces sleep and why the maximal rate of core body cooling positively correlates with sleep onset. Thus, the pathways that promote NREM sleep, reduced energy expenditure, and body cooling are inextricably linked, commanded by the same neurons. This implies that one function of NREM sleep is to lower brain temperature and/or conserve energy.


Asunto(s)
Regulación de la Temperatura Corporal/fisiología , Neuronas/fisiología , Área Preóptica/fisiología , Sueño/fisiología , Adaptación Fisiológica , Animales , Frío , Calor , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-fos/metabolismo
7.
Curr Biol ; 28(4): 580-587.e5, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-29398217

RESUMEN

The lateral habenula has been widely studied for its contribution in generating reward-related behaviors [1, 2]. We have found that this nucleus plays an unexpected role in the sedative actions of the general anesthetic propofol. The lateral habenula is a glutamatergic, excitatory hub that projects to multiple targets throughout the brain, including GABAergic and aminergic nuclei that control arousal [3-5]. When glutamate release from the lateral habenula in mice was genetically blocked, the ability of propofol to induce sedation was greatly diminished. In addition to this reduced sensitivity to propofol, blocking output from the lateral habenula caused natural non-rapid eye movement (NREM) sleep to become highly fragmented, especially during the rest ("lights on") period. This fragmentation was largely reversed by the dual orexinergic antagonist almorexant. We conclude that the glutamatergic output from the lateral habenula is permissive for the sedative actions of propofol and is also necessary for the consolidation of natural sleep.


Asunto(s)
Ácido Glutámico/metabolismo , Habénula/efectos de los fármacos , Hipnóticos y Sedantes/farmacología , Vías Nerviosas/efectos de los fármacos , Propofol/farmacología , Anestésicos Intravenosos/metabolismo , Animales , Células HEK293 , Habénula/fisiología , Humanos , Masculino , Ratones , Vías Nerviosas/fisiología
8.
Nat Med ; 23(6): 768-774, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28481358

RESUMEN

Extended daytime and nighttime activities are major contributors to the growing sleep deficiency epidemic, as is the high prevalence of sleep disorders like insomnia. The consequences of chronic insufficient sleep for health remain uncertain. Sleep quality and duration predict presence of pain the next day in healthy subjects, suggesting that sleep disturbances alone may worsen pain, and experimental sleep deprivation in humans supports this claim. We demonstrate that sleep loss, but not sleep fragmentation, in healthy mice increases sensitivity to noxious stimuli (referred to as 'pain') without general sensory hyper-responsiveness. Moderate daily repeated sleep loss leads to a progressive accumulation of sleep debt and also to exaggerated pain responses, both of which are rescued after restoration of normal sleep. Caffeine and modafinil, two wake-promoting agents that have no analgesic activity in rested mice, immediately normalize pain sensitivity in sleep-deprived animals, without affecting sleep debt. The reversibility of mild sleep-loss-induced pain by wake-promoting agents reveals an unsuspected role for alertness in setting pain sensitivity. Clinically, insufficient or poor-quality sleep may worsen pain and this enhanced pain may be reduced not by analgesics, whose effectiveness is reduced, but by increasing alertness or providing better sleep.


Asunto(s)
Conducta Animal/fisiología , Hiperalgesia/fisiopatología , Umbral del Dolor/fisiología , Dolor/fisiopatología , Privación de Sueño/fisiopatología , Enfermedad Aguda , Analgésicos/farmacología , Animales , Conducta Animal/efectos de los fármacos , Compuestos de Bencidrilo/farmacología , Cafeína/farmacología , Enfermedad Crónica , Corticosterona/sangre , Electroencefalografía , Electromiografía , Femenino , Hiperalgesia/sangre , Ibuprofeno/farmacología , Masculino , Ratones , Modafinilo , Morfina/farmacología , Dolor/sangre , Umbral del Dolor/efectos de los fármacos , Privación de Sueño/sangre , Vigilia , Promotores de la Vigilia/farmacología
9.
Neuron ; 86(6): 1393-406, 2015 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-26087165

RESUMEN

Human genetic studies have revealed an association between GTP cyclohydrolase 1 polymorphisms, which decrease tetrahydrobiopterin (BH4) levels, and reduced pain in patients. We now show that excessive BH4 is produced in mice by both axotomized sensory neurons and macrophages infiltrating damaged nerves and inflamed tissue. Constitutive BH4 overproduction in sensory neurons increases pain sensitivity, whereas blocking BH4 production only in these cells reduces nerve injury-induced hypersensitivity without affecting nociceptive pain. To minimize risk of side effects, we targeted sepiapterin reductase (SPR), whose blockade allows minimal BH4 production through the BH4 salvage pathways. Using a structure-based design, we developed a potent SPR inhibitor and show that it reduces pain hypersensitivity effectively with a concomitant decrease in BH4 levels in target tissues, acting both on sensory neurons and macrophages, with no development of tolerance or adverse effects. Finally, we demonstrate that sepiapterin accumulation is a sensitive biomarker for SPR inhibition in vivo.


Asunto(s)
Biopterinas/análogos & derivados , Regulación de la Expresión Génica/fisiología , Inflamación/metabolismo , Neuralgia/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Animales , Antiinflamatorios no Esteroideos/uso terapéutico , Biopterinas/metabolismo , Presión Sanguínea/efectos de los fármacos , Péptido Relacionado con Gen de Calcitonina/metabolismo , Modelos Animales de Enfermedad , Inhibidores Enzimáticos/uso terapéutico , GTP Ciclohidrolasa/genética , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Ratones Transgénicos , Neuralgia/inducido químicamente , Neuralgia/tratamiento farmacológico , Dimensión del Dolor , Umbral del Dolor/efectos de los fármacos , Umbral del Dolor/fisiología , Tiempo de Reacción/efectos de los fármacos , Tiempo de Reacción/genética , Nervio Ciático/metabolismo , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Sulfasalazina/uso terapéutico , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...