Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2708: 175-194, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37558971

RESUMEN

The identification of distinct retinal ganglion cell (RGC) populations in flat-mounted retinas is key to investigating pathological or pharmacological effects in these cells. In this chapter, we review the main techniques for detecting the total population of RGCs and various of their subtypes in whole-mounted retinas of pigmented and albino rats and mice, four of the animal strains most studied by the scientific community in the retina field. These methods are based on the studies published by the Vidal-Sanz's laboratory.


Asunto(s)
Retina , Células Ganglionares de la Retina , Ratas , Ratones , Animales , Células Ganglionares de la Retina/patología , Retina/patología
2.
Life (Basel) ; 11(11)2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34833013

RESUMEN

Phototoxicity animal models have been largely studied due to their degenerative communalities with human pathologies, e.g., age-related macular degeneration (AMD). Studies have documented not only the effects of white light exposure, but also other wavelengths using LEDs, such as blue or green light. Recently, a blue LED-induced phototoxicity (LIP) model has been developed that causes focal damage in the outer layers of the superior-temporal region of the retina in rodents. In vivo studies described a progressive reduction in retinal thickness that affected the most extensively the photoreceptor layer. Functionally, a transient reduction in a- and b-wave amplitude of the ERG response was observed. Ex vivo studies showed a progressive reduction of cones and an involvement of retinal pigment epithelium cells in the area of the lesion and, in parallel, an activation of microglial cells that perfectly circumscribe the damage in the outer retinal layer. The use of neuroprotective strategies such as intravitreal administration of trophic factors, e.g., basic fibroblast growth factor (bFGF), brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) or pigment epithelium-derived factor (PEDF) and topical administration of the selective alpha-2 agonist (Brimonidine) have demonstrated to increase the survival of the cone population after LIP.

3.
Int J Mol Sci ; 22(18)2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34575905

RESUMEN

BACKGROUND: In adult rats we study the short- and long-term effects of focal blue light-emitting diode (LED)-induced phototoxicity (LIP) on retinal thickness and Iba-1+ activation. METHODS: The left eyes of previously dark-adapted Sprague Dawley (SD) rats were photoexposed to a blue LED (20 s, 200 lux). In vivo longitudinal monitoring of retinal thickness, fundus images, and optical retinal sections was performed from 1 to 30 days (d) after LIP with SD-OCT. Ex vivo, we analysed the population of S-cone and Iba-1+ cells within a predetermined fixed-size circular area (PCA) centred on the lesion. RESULTS: LIP resulted in a circular focal lesion readily identifiable in vivo by fundus examination, which showed within the PCAs a progressive thinning of the outer retinal layer, and a diminution of the S-cone population to 19% by 30 d. In parallel to S-cone loss, activated Iba-1+ cells delineated the lesioned area and acquired an ameboid morphology with peak expression at 3 d after LIP. Iba-1+ cells adopted a more relaxed-branched morphology at 7 d and by 14-30 d their morphology was fully branched. CONCLUSION: LIP caused a progressive reduction of the outer retina with loss of S cones and a parallel dynamic activation of microglial cells in the lesioned area.


Asunto(s)
Luz , Retina/patología , Retina/efectos de la radiación , Animales , Biomarcadores , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Técnica del Anticuerpo Fluorescente , Microglía/metabolismo , Microglía/patología , Microglía/efectos de la radiación , Ratas , Retina/metabolismo , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Células Fotorreceptoras Retinianas Conos/efectos de la radiación , Degeneración Retiniana/diagnóstico por imagen , Degeneración Retiniana/etiología , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Factores de Tiempo , Tomografía de Coherencia Óptica
4.
Exp Eye Res ; 211: 108746, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34450185

RESUMEN

PURPOSE: To develop a model of focal injury by blue light-emitting diode (LED)-induced phototoxicity (LIP) in pigmented mouse retinas and to study the effects on cone, Iba-1+ cells and retinal pigment epithelium (RPE) cell populations after administration of basic fibroblast growth factor (bFGF) and minocycline, alone or combined. METHODS: In anesthetized dark-adapted adult female pigmented C57BL/6 mice, left pupils were dilated and the eye exposed to LIP (500 lux, 45 s). The retina was monitored longitudinally in vivo with SD-OCT for 7 days (d). Ex vivo, the effects of LIP and its protection with bFGF (0.5 µg) administered alone or combined with minocycline (45 mg/kg) were studied in immunolabeled arrestin-cone outer segments (a+OS) and quantified within a predetermined fixed-size circular area (PCA) centered on the lesion in flattened retinas at 1, 3, 5 or 7d. Moreover, Iba-1+ cells and RPE cell morphology were analysed with Iba-1 and ZO-1 antibodies, respectively. RESULTS: LIP caused a focal lesion within the superior-temporal retina with retinal thinning, particularly the outer retinal layers (116.5 ± 2.9 µm to 36.8 ± 6.3 µm at 7d), and with progressive diminution of a+OS within the PCA reaching minimum values at 7d (6218 ± 342 to 3966 ± 311). Administration of bFGF alone (4519 ± 320) or in combination with minocycline (4882 ± 446) had a significant effect on a+OS survival at 7d and Iba-1+ cell activation was attenuated in the groups treated with minocycline. In parallel, the RPE cell integrity was progressively altered after LIP and administration of neuroprotective components had no restorative effect at 7d. CONCLUSIONS: LIP resulted in progressive outer retinal damage affecting the OS cone population and RPE. Administration of bFGF increased a+OS survival but did not prevent RPE deterioration.


Asunto(s)
Factor 2 de Crecimiento de Fibroblastos/uso terapéutico , Luz/efectos adversos , Traumatismos Experimentales por Radiación/etiología , Células Fotorreceptoras Retinianas Conos/efectos de la radiación , Degeneración Retiniana/etiología , Animales , Arrestinas/metabolismo , Proteínas de Unión al Calcio/metabolismo , Modelos Animales de Enfermedad , Quimioterapia Combinada , Femenino , Inyecciones Intravítreas , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/metabolismo , Microscopía Fluorescente , Minociclina/uso terapéutico , Traumatismos Experimentales por Radiación/diagnóstico por imagen , Traumatismos Experimentales por Radiación/prevención & control , Degeneración Retiniana/diagnóstico por imagen , Degeneración Retiniana/prevención & control , Epitelio Pigmentado de la Retina/metabolismo , Tomografía de Coherencia Óptica
5.
Int J Mol Sci ; 22(4)2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33669765

RESUMEN

Signaling mediated by cytokines and chemokines is involved in glaucoma-associated neuroinflammation and in the damage of retinal ganglion cells (RGCs). Using multiplexed immunoassay and immunohistochemical techniques in a glaucoma mouse model at different time points after ocular hypertension (OHT), we analyzed (i) the expression of pro-inflammatory cytokines, anti-inflammatory cytokines, BDNF, VEGF, and fractalkine; and (ii) the number of Brn3a+ RGCs. In OHT eyes, there was an upregulation of (i) IFN-γ at days 3, 5, and 15; (ii) IL-4 at days 1, 3, 5, and 7 and IL-10 at days 3 and 5 (coinciding with downregulation of IL1-ß at days 1, 5, and 7); (iii) IL-6 at days 1, 3, and 5; (iv) fractalkine and VEGF at day 1; and (v) BDNF at days 1, 3, 7, and 15. In contralateral eyes, there were (i) an upregulation of IL-1ß at days 1 and 3 and a downregulation at day 7, coinciding with the downregulation of IL4 at days 3 and 5 and the upregulation at day 7; (ii) an upregulation of IL-6 at days 1, 5, and 7 and a downregulation at 15 days; (iii) an upregulation of IL-10 at days 3 and 7; and (iv) an upregulation of IL-17 at day 15. In OHT eyes, there was a reduction in the Brn3a+ RGCs number at days 3, 5, 7, and 15. OHT changes cytokine levels in both OHT and contralateral eyes at different time points after OHT induction, confirming the immune system involvement in glaucomatous neurodegeneration.


Asunto(s)
Encéfalo/patología , Glaucoma/patología , Inflamación/patología , Neuronas/patología , Células Ganglionares de la Retina/patología , Animales , Citocinas/metabolismo , Modelos Animales de Enfermedad , Glaucoma/fisiopatología , Mediadores de Inflamación/metabolismo , Presión Intraocular , Masculino , Ratones , Microglía/patología , Hipertensión Ocular/metabolismo , Hipertensión Ocular/fisiopatología , Factores de Tiempo
6.
Int J Mol Sci ; 21(19)2020 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-33008127

RESUMEN

Here, we evaluated the effects of PEDF (pigment epithelium-derived factor) and PEDF peptides on cone-photoreceptor cell damage in a mouse model of focal LED-induced phototoxicity (LIP) in vivo. Swiss mice were dark-adapted overnight, anesthetized, and their left eyes were exposed to a blue LED placed over the cornea. Immediately after, intravitreal injection of PEDF, PEDF-peptide fragments 17-mer, 17-mer[H105A] or 17-mer[R99A] (all at 10 pmol) were administered into the left eye of each animal. BDNF (92 pmol) and bFGF (27 pmol) injections were positive controls, and vehicle negative control. After 7 days, LIP resulted in a consistent circular lesion located in the supratemporal quadrant and the number of S-cones were counted within an area centered on the lesion. Retinas treated with effectors had significantly greater S-cone numbers (PEDF (60%), 17-mer (56%), 17-mer [H105A] (57%), BDNF (64%) or bFGF (60%)) relative to their corresponding vehicle groups (≈42%). The 17-mer[R99A] with no PEDF receptor binding and no neurotrophic activity, PEDF combined with a molar excess of the PEDF receptor blocker P1 peptide, or with a PEDF-R enzymatic inhibitor had undetectable effects in S-cone survival. The findings demonstrated that the cone survival effects were mediated via interactions between the 17-mer region of the PEDF molecule and its PEDF-R receptor.


Asunto(s)
Proteínas del Ojo/farmacología , Factores de Crecimiento Nervioso/farmacología , Péptidos/farmacología , Retina/efectos de los fármacos , Células Fotorreceptoras Retinianas Conos/efectos de los fármacos , Serpinas/farmacología , Animales , Córnea/efectos de los fármacos , Córnea/crecimiento & desarrollo , Córnea/metabolismo , Dermatitis Fototóxica , Modelos Animales de Enfermedad , Proteínas del Ojo/metabolismo , Humanos , Ratones , Factores de Crecimiento Nervioso/metabolismo , Fragmentos de Péptidos/farmacología , Péptidos/genética , Fotoperiodo , Receptores de Neuropéptido/genética , Retina/crecimiento & desarrollo , Células Fotorreceptoras Retinianas Conos/metabolismo , Células Fotorreceptoras Retinianas Conos/patología , Serpinas/metabolismo
7.
Int J Mol Sci ; 20(12)2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-31226772

RESUMEN

We studied short- and long-term effects of intravitreal injection of N-methyl-d-aspartate (NMDA) on melanopsin-containing (m+) and non-melanopsin-containing (Brn3a+) retinal ganglion cells (RGCs). In adult SD-rats, the left eye received a single intravitreal injection of 5µL of 100nM NMDA. At 3 and 15 months, retinal thickness was measured in vivo using Spectral Domain-Optical Coherence Tomography (SD-OCT). Ex vivo analyses were done at 3, 7, or 14 days or 15 months after damage. Whole-mounted retinas were immunolabelled for brain-specific homeobox/POU domain protein 3A (Brn3a) and melanopsin (m), the total number of Brn3a+RGCs and m+RGCs were quantified, and their topography represented. In control retinas, the mean total numbers of Brn3a+RGCs and m+RGCs were 78,903 ± 3572 and 2358 ± 144 (mean ± SD; n = 10), respectively. In the NMDA injected retinas, Brn3a+RGCs numbers diminished to 49%, 28%, 24%, and 19%, at 3, 7, 14 days, and 15 months, respectively. There was no further loss between 7 days and 15 months. The number of immunoidentified m+RGCs decreased significantly at 3 days, recovered between 3 and 7 days, and were back to normal thereafter. OCT measurements revealed a significant thinning of the left retinas at 3 and 15 months. Intravitreal injections of NMDA induced within a week a rapid loss of 72% of Brn3a+RGCs, a transient downregulation of melanopsin expression (but not m+RGC death), and a thinning of the inner retinal layers.


Asunto(s)
N-Metilaspartato/toxicidad , Células Ganglionares de la Retina/efectos de los fármacos , Opsinas de Bastones/metabolismo , Animales , Recuento de Células , Femenino , Inyecciones Intravítreas , N-Metilaspartato/administración & dosificación , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Opsinas de Bastones/análisis , Factor de Transcripción Brn-3A/análisis , Factor de Transcripción Brn-3A/metabolismo
8.
Transl Vis Sci Technol ; 8(6): 36, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31890348

RESUMEN

PURPOSE: To develop a focal photoreceptor degeneration model by blue light-emitting diode (LED)-induced phototoxicity (LIP) and investigate the protective effects of topical brimonidine (BMD) or intravitreal brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF), or basic fibroblast growth factor (bFGF). METHODS: In anesthetized, dark-adapted, adult female Swiss mice, the left eye was dilated and exposed to blue light (10 seconds, 200 lux). After LIP, full-field electroretinograms (ERG) and spectral-domain optical coherence tomography (SD-OCT) were obtained longitudinally, and reactive-Iba-1+monocytic cells, TUNEL+ cells and S-opsin+ cone outer segments were examined up to 7 days. Left eyes were treated topically with BMD (1%) or vehicle, before or right after LIP, or intravitreally with BDNF (2.5 µg), CNTF (0.2 µg), bFGF (0.5 µg), or corresponding vehicle right after LIP. At 7 days, S-opsin+ cone outer segments were counted within predetermined fixed-size areas (PFA) centered on the lesion in both flattened retinas. RESULTS: SD-OCT showed a circular region in the superior-temporal left retina with progressive thinning (207.9 ± 5.6 µm to 160.7 ± 6.8 µm [7 days], n = 8), increasing TUNEL+ cells (peak at 3 days), decreasing S-opsin+ cone outer segments, and strong microglia activation. ERGs were normal by 3 days. Total S-opsin+ cones in the PFA for LIP-treated and fellow-retinas were 2330 ± 262 and 5601 ± 583 (n = 8), respectively. All neuroprotectants (n = 7-11), including topical BMD pre- or post-LIP, or intravitreal BDNF, CNTF, and bFGF, showed significantly greater S-opsin+ cone survival than their corresponding vehicle-treated groups. CONCLUSIONS: LIP is a reliable, quantifiable focal photoreceptor degeneration model. Topical BMD or intravitreal BDNF, CNTF, or bFGF protect against LIP-induced cone-photoreceptor loss. TRANSLATIONAL RELEVANCE: Topical BMD or intravitreal BDNF, CNTF, or bFGF protect cones against phototoxicity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA